CS611 Lecture 26 Strong Normalization 1 November 2006

Lecturer: Dexter Kozen

1 Introduction

In Lecture 24, we proved that each term in the simply typed A-calculus would never get stuck. Today, we
want to show that it will actually terminate. This property is known as strong normalization.

Formally, we want to prove that if F e : 7, then e |}. We will prove this by induction, but we will need
a fairly sophisticated induction hypothesis that takes both the typing and the reduction order into account.
We cannot just do induction on the subterm relation. For example, even if e; and ey terminate, we cannot
conclude that e; ey does: consider e; = e; = A\z. zx.

2 Church vs. Curry

We will prove this theorem in the pure simply-typed A-calculus in Curry style. This differs from Church
style in that the binding occurrence of a variable in a A-abstraction is not annotated with its type.

Let o, 3,... denote type variables, x,y,... term variables, o,7,... types, and d,e,... terms. In the
Curry-style simply typed A-calculus, terms and types are defined by

e u= x | ed | Ar.e T = a| o—T

and the typing rules are

I'te:o—7 T'kd:o I'Nxz:oke:T
t(ed): 7 P'(M\z.e):o—rT

Nerkax:7

Note that in Church style, a closed term can have at most one type, but in Curry style, if it has any type
at all, then it has infinitely many. For example, F Az.z : ((o« — ) — 7) — ((a« — 8) — 7). In general, if
Fe: 7, then also F e : 7/, where 7’ is any substitution instance of 7.

A term e is typable if there exists a type environment I' and a type 7 such that I' - e : 7. One can show
by induction that if I' - e : 7, then FV(e) C domT.

3 Strong Normalization

By the Church—Rosser theorem, normal forms are unique up to a-equivalence, so any two reduction strategies
starting from the same term that terminate must yield the same result up to a-equivalence. However, there
may be some strategies that terminate and some that do not.

A term is strongly normalizing (SN) if all S-reduction sequences starting from that term converge to a
normal form; equivalently, if there is no infinite S-reduction sequence starting from that term. Our main
theorem is

Theorem 1. All typable terms are strongly normalizing.

3.1 Ultra-Strong Normalization

We say that a term e is ultra-strongly normalizing with respect to I' and o and write I' b e : o if

(i)Tre:o
(ii) for all n > 0, if ¢ is of the form 0y — 02 — -+ = 0, = 7and I' i ¢e; : 05, 1 < i < n, then
eey ey -+ e, is SN.



A term e is ultra-strongly normalizing (USN) if it is ultra-strongly normalizing with respect to some T’
and o.
The definition of the relation , may seem circular, but it is not: I' I e : o is defined in terms of

I' i, e : o;, where the o; are strict subexpressions of o, so it is well-defined by structural induction on

types.
Almost all the work we need to do is contained in the following lemma:

Lemma 2. Let x1,...,x, be distinct variables. If
i) T,zy:0n,...,z1:00Fe:T,
(i) Tk di:oi, 1 <i<n, and

(iii) x; ¢ FV(d;) forj >,

then I' b ce{di/x1} - {dn/an} @ 7.

Proof. Suppose the three premises (i)—(iii) hold. The proof is by induction on the structure of e.
Case 1 Variable z.

Case 1A z = z; for some i. We have 7 = o; by assumption (i) and x{dy/z1} - {d,/2xn} = d; by
assumption (iii). The desired conclusion is therefore I' ; d; : o;, which follows from assumption (ii).

Case 1B =z ¢ {z1,...,x,}. We have I' F = : 7 by assumption (i), and x{di/z1}--- {dn/zn} = x. The
desired conclusion is therefore I' Iz : 7. We already have I' - x : 7, so we need only show that z e; --- e,
is SN for all appropriately typed USN terms e;. But in any infinite S-reduction sequence starting from
T ep -+ en, every reduction must be inside one of the e;, since there are no other g-redexes; therefore some

e; must contain an infinite subsequence. But this is impossible, since the e; are USN.

Case 2 Application e; es. For some type o,

Tyazp:op,...,x1:01F(e1 e2) : 7
= Dap:ion, ..., x1:00Fer:o—=>7 Al zy:0,,...,21:01Fex:0
= Tk e{di/xi}---{dn/zn} o —7 AN TEg ea{di/xi}-- {dn/zpn} i 0 (1)

by the induction hypthesis. By clause (i) in the definition of USN, this implies

FFe{di/z1}--{dn/xn}io—7 AN TkEex{di/a1} - {dn/xn}: 0
= Ttk (eg ea){di/ax1} - {dn/xn}: 7

This establishes clause (i) in the definition of USN for e; es. For clause (ii), we must show that if 7 = 73 —

-—Tpand f I'k e i 7 for 3 <4 < m, then

(e1 e2){di/m1} -+ {dn/xn} €3 -+ en
= (er{di/x1} - {dn/xn}) (e2{di/m1} - {dn/T0n}) €3 -+ em (2)

is SN. But by (1),

Fl_lfszvel{dl/xl}"'{dn/l‘n}:0’—>7-3—>..._>7—m

I Foy ea{di/x1} - {dn/T0} 1 0
e e:7m, 3<i<m,

USN ~

thus (2) is SN. This proves that I' - (eq e2){d1/x1}--- {d,/xn} : 7.



Case 3 Abstraction Az.e. We can assume without loss of generality that Az.e has been a-converted so
that @ ¢ FV(d;) and = # x; for any i, 1 < i < n. Instead of z, let us call this bound variable x,;. Then
for some 0,11, we have

1) T,xp:0n, ... ,x1:01F (Azper.€):oper — 7,

(i) 'k, di s 05, 1 <i<mn,and

(iii) x; ¢ FV(d;) for j > i (including j = n + 1),

and we wish to show I' £ (Azpqi.€){di/x1} - {dn/xn} : 00y — 7.
Starting from assumption (i), we have

Tyap:ion, ...,x1:00F (Axpyr.€) iopp1 — 7

= T,ap:0pn,...,01:01,Tpq1:0p41H €T

= I xpy1:0n41,Tni0n, ..., 2101 Fe:T.

If dy,41 is any term such that I' b dy41 : 0511, then by the induction hypothesis we have both

I, Zpi1: Ongr gy e{di/ai} - {dn/xn} o 7

3)
Db e{di/a}t - Adnsr/anga} o 7 (4)
For clause (i) in the definition of USN, starting from (3), we have
F7 Tn41 : On41 F 6{d1/$1} s {dn/xn} T
= F}_)\x,ﬂ,l‘(e{dl/xl}"'{dn/l'n})10n+1—>7'
= T'F (Arpr.e){di/x1} - {dn/zn} : 0nt1 — 7 since x,41 ¢ FV(d;).
For clause (ii), we wish to show that if in addition to the assumptions (i)—(iii) above, 7 = 0,42 — -+ —
om —pand ', d; oy, n+1<i<m,then

(Arpyr.e){di/zi} - {dn/Tn} dugr - di

= (Aznqr-(efdi/zi} - {dn/z0})) dnyr -+ dm

is SN. Consider any infinite reduction sequence starting from this term. We know that e{dy /x1}--- {d,/zn}
is SN by (3), and we know that the d; are SN by assumption, n + 1 < i < m. Therefore, eventually a head

reduction must be performed:
(Azn1- (e{di/z1} - {dn/20})) dpgr -+ dm
= g (efdi/an} - {dn/2n})) dpy -+

(e{dr/ar}--Adn/n}) {dpi1/Tnia} dppy -+ d;

-
But we could have done the head reduction initially:

—

(/\mn+1.(e{d1/$1}"' {dn/xn})) dn+1 dm
— eldi/zi} - A{dn/znH {dns1/Tni1} dug2 - dim
(e{di/x1} - {dn/@n}) {dpi1/Tns1} dpyo - dys

leading to an infinite reduction sequence from e{dy/x1} - {dn/xn}{dn+1/Tns+1} dpnyo -+ dm
contradicts (4).

k
—

. But this
O

Proof of Theorem 1. Any typable term is USN: take n = 0 in Lemma 2. Any term that is USN is SN:
take n = 0 in the definition of USN.

O



