
CS611 Lecture 25 Products, Sums, and Other Datatypes 27 October 2006
Lecturer: Dexter Kozen

1 Introduction

In this lecture, we add constructs to the typed λ-calculus that allow working with more complicated data
structures, such as pairs, tuples, records, sums and recursive functions. We also provide denotational seman-
tics for these new constructs.

2 Recap – The Typed λ-Calculus λ→

2.1 Syntax

terms e ::= n | true | false | null | x | e1 e2 | λx :τ. e
types τ ::= int | bool | unit | τ1 → τ2

values v ::= n | true | false | null | λx :τ. e closed

2.2 Typing Rules

Γ ` n : int Γ ` true :bool Γ ` false :bool Γ ` null :unit Γ, x :τ ` x :τ

Γ ` e0 :σ → τ Γ ` e1 :σ
Γ ` e0 e1 :τ

Γ, x :σ ` e :τ
Γ ` (λx :σ. e) :σ → τ

3 Simple Data Structures

Each data structure can be added by extending the syntax of expressions (e), types (τ) and values (v). The
evaluation contexts (E) will also need to be extended, and evaluation and type derivation rules added to
work with the new syntax.

3.1 Pairs

Syntax:

e ::= · · · | (e1, e2) | #1 e | #2 e

τ ::= · · · | τ1 ∗ τ2

v ::= · · · | (v1, v2)
E ::= · · · | ([ • ], e) | (v, [ • ]) | #1 [ • ] | #2 [ • ]

For every added syntactic form, we observe that we have expressions that introduce the form, and expressions
that eliminate the form. In the case of pairs, the introduction expression is (e1, e2), and the elimination
expressions are #1 e and #2 e.

Evaluation rules:

#1 (v1, v2) → v1 #2 (v1, v2) → v2

Note that these rules define eager evaluation, because we only select from a pair when both elements are
already evaluated to a value.

Typing rules:

Γ ` e1 :τ1 Γ ` e2 :τ2

Γ ` (e1, e2) :τ1 ∗ τ2

Γ ` e :τ1 ∗ τ2

Γ ` #1 e :τ1

Γ ` e :τ1 ∗ τ2

Γ ` #2 e :τ2
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3.2 Tuples

Syntax:

e ::= · · · | (e1, . . . , en) | #n e

τ ::= · · · | τ1 ∗ · · · ∗ τn

v ::= · · · | (v1, . . . , vn)
E ::= · · · | (v1, . . . , vi−1, [ • ], ei+1, . . . , en) | #n [ • ]

Evaluation rule:

#m (v1, . . . , vn) → vm (1 ≤ m ≤ n)

Typing rules:

Γ ` ei :τi i ∈ {1, . . . , n}
Γ ` (e1, . . . , en) :τ1 ∗ · · · ∗ τn

Γ ` e :τ1 ∗ · · · ∗ τn

Γ ` #m e :τm
(1 ≤ m ≤ n)

3.3 Records

Syntax:

e ::= · · · | {x1 = e1, . . . , xn = en} | e.x

τ ::= · · · | {x1 : τ1, . . . , xn : τn}
v ::= · · · | {x1 = v1, . . . , xn = vn}
E ::= · · · | {x1 = v1, . . . , xi−1 = vi−1, xi = [ • ], xi+1 = ei+1, . . . , xn = en) | [ • ].x

Evaluation rule:

{x1 = v1, . . . , xn = vn}.xi → vi (1 ≤ i ≤ n)

Typing rules:

Γ ` ei :τi, 1 ≤ i ≤ n

Γ ` {x1 = e1, . . . , xn = en) :{x1 : τ1, . . . , xn : τn}
Γ ` e :{x1 : τ1, . . . , xn : τn}

Γ ` e.xi :τi
(1 ≤ i ≤ n)

3.4 Sums

Sums are useful for representing datatypes that can have multiple forms. For example, a tail of a list can
either be another nonempty list or null.

Syntax:

e ::= · · · | inLτ1+τ2e | inRτ1+τ2e | case e0 of e1 | e2

τ ::= · · · | τ1 + τ2

v ::= · · · | inLτ1+τ2 v | inRτ1+τ2 v

E ::= · · · | inL [ • ] | inR [ • ] | case [ • ] of e1 | e2

The inL and inR constructs are called left injection and right injection, respectively.

Evaluation rules:

case (inLτ1+τ2 v) of e1 | e2 → e1 v case (inRτ1+τ2 v) of e1 | e2 → e2 v
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Here e1 and e2 are functions and must have the same codomain type in order for the whole case expression
to have a type.

Typing rules:

Γ ` e :τ1

Γ ` inLτ1+τ2 e :τ1 + τ2

Γ ` e :τ2

Γ ` inRτ1+τ2 e :τ1 + τ2

Γ ` e0 :τ1 + τ2 Γ ` e1 :τ1 → τ3 Γ ` e2 :τ2 → τ3

Γ ` case e0 of e1 | e2 :τ3

To give an example of the sum type, consider the sum of two unit types, unit + unit. This type has
exactly two elements, namely inL null and inR null. We could take this as a definition of the type bool with
elements true

4
= inL null and false

4
= inR null. The statement if b then e1 else e2 could then be written as

case b of λz. e1 | λz. e2.
SML has a construct that is a generalization of the sum type:

e ::= · · · | xi(e)
τ ::= · · · | [x1 : τ1, . . . , xn : τn]

The SML syntax is

datatype t = x1 of t1 | ... | xn of tn.

Such datatypes are also called variants. The xi are constructors, and must be globally (across all types)
unique to avoid confusion as to which type a particular constructor is referring to (in our sum type, the
confusion is alleviated by using τ1 + τ2 subscripts in inLand inR).

4 Denotational Semantics

We now give the denotational semantics for type domains of λ→+∗, the strongly-typed λ-calculus with sum
and product types.

T [[τ → τ ′ ]]
4
= T [[τ ]] → T [[τ ′ ]]

T [[τ ∗ τ ′ ]]
4
= T [[τ ]]× T [[τ ′ ]]

T [[τ + τ ′ ]]
4
= T [[τ ]] + T [[τ ′ ]]

As before, our contract for this language is:

ρ |= Γ ∧ Γ ` e :τ ⇒ C[[e ]]Γρ ∈ T [[τ ]].

The remaining semantic rules are:

C[[(e1, e2)]]Γρ
4
= 〈C[[e1 ]]Γρ, C[[e2 ]]Γρ〉

C[[#1 e ]]Γρ
4
= π1(C[[e ]]Γρ)

C[[#2 e ]]Γρ
4
= π2(C[[e ]]Γρ)

C[[ inLτ1+τ2 e ]]Γρ
4
= in1(C[[e ]]Γρ)

C[[ inRτ1+τ2 e ]]Γρ
4
= in2(C[[e ]]Γρ)

C[[case e0 of e1 | e2 ]]Γρ
4
= case C[[e0 ]]Γρ of inL v → (C[[e1 ]]Γρ) v | inR v → (C[[e2 ]]Γρ) v,

where πn is the (mathematical) projection operator that selects the nth element of a product and inn is the
injection operator that injects an element into a coproduct.
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5 Adding Recursion

So far this language is not Turing-complete, because there is no way to do unbounded recursion. This is true
because there is no possibility of nontermination. The easiest way to add this capability to the language is
to add support for recursive functions.

To do this, we first extend the definition of an expression:

e ::= · · · | rec f :σ → τ .λx :σ. e

The new keyword rec defines a recursive function named f such that both x and f are in scope inside e.
Intuitively, the meaning of rec f :σ → τ .λx :σ. e is the least fixpoint of the map f 7→ λx :σ. e, where both f
and λx :σ. e are of type σ → τ .

For example, we would write the recursive function

f(x) = if x > 0 then 1 else f(x + 1)

as

rec f : int → int .λx : int. if x > 0 then 1 else f(x + 1).

The small-step operational semantics evaluation rule for rec is:

rec f :σ → τ .λx :σ. e → λx :σ. e{(rec f :σ → τ .λx :σ. e)/f}

and the typing rule for rec is

Γ, f :σ → τ, x :σ ` e :τ
Γ ` (rec f :σ → τ .λx :σ. e) :σ → τ

.

The denotational semantics is defined in terms of the fix operator on domains:

C[[rec f :σ → τ .λx :σ. e ]]Γρ
4
= fix λg ∈ T [[σ → τ ]]. λv ∈ T [[σ ]]. C[[e ]] Γ[(σ → τ)/f, σ/x] ρ[v/x, g/f ]

Of course, whenever we take a fixed point, we have to make sure that a fixed point exists. We know that the
function satisfies continuity and monotonicity because we are writing in the metalanguage. However, for a
fixed point to exist, T [[σ → τ ]] must be a pointed CPO. But for this to be true, we have to make sure ⊥ is
in the codomain of the function:

T [[σ → τ ]]⊥ = T [[σ ]] → T [[τ ]]⊥,

We also have to change our contract to account for the possibility of nontermination:

ρ |= Γ ∧ Γ ` e :τ ⇒ C[[e ]]Γρ ∈ T [[τ ]]⊥.

Finally, we have to lift our semantics to take nontermination into account. For example, we should change
the denotation of a pair to:

C[[(e1, e2)]]Γρ
4
=

{
〈C[[e1 ]]Γρ, C[[e2 ]]Γρ〉, if both C[[e1 ]]Γρ 6= ⊥ and C[[e2 ]]Γρ 6= ⊥,
⊥, otherwise.
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