
CS611 Lecture 24 Soundness of the Typing Rules 25 October 2006
Lecturer: Dexter Kozen

1 Soundness from the Operational Perspective

We will now look at the soundness of the λ→ typing rules from the operational perspective. This means:

The typing rules are sound ⇐⇒ no well-formed program gets stuck.

For this language, well-formed and well-typed are synonymous. To be more precise, let us call e irreducible
and write Irred(e) if there is no reduction possible on e. All values of λ→ are irreducible. If e is irreducible
but is not a value, then e is said to be stuck. We wish to show

Theorem 1 (Operational Soundness) ` e :τ ∧ e
∗→ e′ ∧ Irred(e′) ⇒ e′ ∈ Val ∧ ` e′ :τ .

We will prove this in two steps using the following two lemmas:

Lemma 2 (Type Preservation) Γ ` e :τ ∧ e → e′ ⇒ Γ ` e′ :τ .

Lemma 3 (Progress) ` e :τ ∧ Irred(e) ⇒ e ∈ Val.

The type preservation lemma says that as we evaluate a program, its type is preserved at each step. The
progress lemma says that every program is either a value or can be stepped to another program (and by the
preservation lemma, this will be of the same type).

Operational soundness follows easily from these two lemmas. Type preservation says every step preserves
the type, so we use induction on the number of steps taken in e

∗→ e′ to show that e′ must have the same
type as e. Then progress can be applied to e′ to show that the evaluation isn’t stuck there. We will now set
out to prove these two lemmas.

2 Proof of the Type Preservation Lemma

Assuming that Γ ` e : τ and e → e′, we wish to show that Γ ` e′ : τ . We will do this by induction on the
well-founded subterm relation.

If e → e′, there are three cases corresponding to the three evaluation rules:

e0 → e′0
e0 e1 → e′0 e1

(L) e → e′

v e → v e′
(R)

(λx :σ. e) v → e{v/x}
(β)

• Case (L): e0 e1 → e′0 e1.

Because we have a typing derivation for e0 e1, we know that there are typing derivations for e0 and
e1 too. We must have Γ ` e0 :σ → τ and Γ ` e1 :σ for some type σ. By the induction hypothesis, the
reduction e0 → e′0 also preserves type, so Γ ` e′0 :σ → τ . Applying the typing rule for applications, we
have that Γ ` e′0 e1 :τ .

• Case (R): v e → v e′.

This case is symmetrical to case (L). In this case it is the right-hand subexpression making the step.

• Case (β): (λx :σ. e) v → e{v/x}.
The typing derivation of Γ ` (λx :σ. e) v :τ must look like this:

Γ, x :σ ` e :τ
Γ ` (λx :σ. e) :σ → τ Γ ` v :σ

Γ ` (λx :σ. e) v :τ

We want to show that Γ ` e{v/x} :τ using the facts Γ, x :σ ` e :τ and ` v :σ. Our induction hypothesis
doesn’t help us here; we need to prove this separately. It follows as a special case of the substitution
lemma below, which captures the type preservation of β-reduction.

1

3 The Substitution Lemma

Lemma 4 (Substitution Lemma) ` v :σ ⇒ (Γ, x :σ ` e :τ ⇔ Γ ` e{v/x} :τ).

We will prove this by structural induction on e.

• Case 1: x /∈ FV(e).

This case covers the base cases e ∈ {n, true, false, null} and e = y 6= x and λ-abstractions λx :ρ. e that
bind x. In this case the substitution has no effect and any binding of x in the type environment Γ is
irrelevant, thus the lemma reduces to the trivial statement

` v :σ ⇒ (Γ ` e :τ ⇔ Γ ` e :τ).

• Case 2: e = x.

In this case the lemma reduces to

` v :σ ⇒ (Γ, x :σ ` x :τ ⇔ Γ ` v :τ),

since x{v/x} = v. Since v is closed, the type environment Γ is irrelevant, so the statement further
reduces to

` v :σ ⇒ (x :σ ` x :τ ⇔ ` v :τ).

Since types are unique, both sides of the double implication say that σ = τ , so again the lemma reduces
to a tautology.

• Case 3: e = e0 e1.

Suppose ` v :σ.

Γ, x :σ ` e0 e1 :τ ⇔ ∃σ Γ, x :σ ` e0 :σ → τ ∧ Γ, x :σ ` e1 :σ typing rule for applications
⇔ ∃σ Γ ` e0 {v/x} :σ → τ ∧ Γ ` e1 {v/x} :σ induction hypothesis
⇔ Γ ` e0 {v/x} e1 {v/x} :τ typing rule for applications
⇔ Γ ` (e0 e1){v/x} :τ definition of substitution.

• Case 4: e = λy :ρ. e′, where y 6= x (the case y = x was covered in Case 1).

Suppose ` v : σ. The type of λy : ρ. e′, if it exists, must be ρ → τ for some τ . Similarly, the type of
(λy :ρ. e′){v/x} = λy :ρ. (e′ {v/x}), if it exists, must be ρ → τ ′ for some τ ′.

Γ, x :σ ` (λy :ρ. e′) :ρ → τ ⇔ Γ, x :σ, y :ρ ` e′ :τ typing rule for abstractions
⇔ Γ, y :ρ, x :σ ` e′ :τ exchange
⇔ Γ, y :ρ ` e′ {v/x} :τ induction hypothesis
⇔ Γ ` λy :ρ. (e′ {v/x}) :ρ → τ typing rule for abstractions
⇔ Γ ` (λy :ρ. e′){v/x} :ρ → τ definition of substitution.

4 Proof of the Progress Lemma

To finish the proof of soundness, it remains to prove the progress lemma. Recall that this lemma states

` e :τ ∧ Irred(e) ⇒ e ∈ Val,

or equivalently,

` e :τ ∧ e /∈ Val ⇒ ∃e′ e → e′.

2

In other words, we cannot get stuck when evaluating a well-typed expression.
We prove the progress lemma using structural induction on e. Recall the definition of a term in λ→:

e ::= b | x | λx :τ. e | e0 e1,

where b denotes a constant. This gives four cases:

• Case e = b.

Since b ∈ Val, we are done.

• Case e = x.

This case is impossible, because we cannot assign a type to x if the type environment is empty.

• Case e = λx :σ. e′.

Since e ∈ Val, we are done.

• Case e = e0 e1.

We know that there is a type derivation of Γ ` e0 e1 :τ , and the last step of this derivation must have
the form

Γ ` e0 :σ → τ Γ ` e1 :σ
Γ ` e0 e1 :τ

for some type σ. By the induction hypothesis, either e0 ∈ Val or ∃e′0 e0 → e′0, and either e1 ∈ Val or
∃e′1 e1 → e′1. This gives three possibilities:

– Both e0 and e1 are values. Since e0 is a value with an arrow type σ → τ , it has to be an
abstraction, say e0 = λx :σ. e′′, and e1 is some value v of type σ. Then

e = (λx :σ. e′′) v → e′′ {v/x},

so e can be further reduced.

– e0 is not a value. Then ∃e′0 e0 → e′0, and we have

e0 → e′0
e0 e1 → e′0 e1,

so e = e0 e1 can be further reduced.

– e0 is some value v, but e1 is not a value. Then ∃e′1 e1 → e′1, and we have

e1 → e′1
v e1 → v e′1,

so e = v e1 can be further reduced.

This completes the proof.

3

