CS611 Lecture 22 Scott's D, Construction 20 October 2006

Lecturer: Dexter Kozen

As observed in Lecture 19, one of the problems with modeling the untyped A-calculus is that we cannot
have a nontrivial domain D isomorphic to its function space D — D because of cardinality restrictions.
However, Dana Scott showed that given any pointed CPO D, it is possible to embed D into a pointed CPO
D, that is isomorphic to its continuous function space [Ds — Doso]. This construction allows us to give a
denotational model of the untyped A-calculus.

The notes on the following pages give an overview of Scott’s construction. The notes are extracted from

Leonid Rudin, A-Logic. Technical Report 4521, Computer Science Department, California Institute of Tech-
nology, May 1981.
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We say M = N iff it is provable from the axioms in (1.2).

1.2.1 Let ¥ = M.(Ox.f(xx)) (Ax.f(xx)). Then Y solves the
problem: given any A-term F, find a A-term A such that A = FA: id.e.,

A is a fixed point of F.

Theorem
For any A-term F there exists at least one fixed point A of
F, namely
A - Y(F): i.e., F(Y(F)) = Y(F).
This theorem is proved directly by applying Y to F and using the B-rule:

YF

(M. Ox f(xx)) (Ax. £(xx))) (F)

(Ax.F(xx)) (Ax.F(xx))

F((Ax.F(xx)) (Ax.F(xx)))

F(YF): i.e., YF is a fixed point.

Y is called a paradoxical combinator.

B. Construction of D,-

Because of the type-free nature of the application of A-calculus,
the domain of any interpretation must include a significant portion of its
own function space. Thus semantics of this calculus is based on a solution

of an isomorphism
(*) D= [D~— D],

where [D —> D] denotes some suitable notion of function
space from D to itself. Thus we need to construct a solution to the
equation (*). Historically, a fist solution was found by D. Scott and
was called D . We now give some definitions and properties of D,.. Again,

for proofs the reader is referred to Barendregt (1977) and Wadsworth (1976).



1.3 Definition.

The partially ordered set (D,<) is a complete lattice if
¥X ¢ D, there exists a supremum UX € D. Denote top | = UD and bottom
1 =D (i.e., largest and smallest elements of D). The supremum and

infimum of {x,v} are denoted as xUy. xNy.

1.4 Lemma
If D is a complete lattice, then each of its subsets X has an

infimum: NX = U{z[z

[1h\

X}. Here z = X iff ¥x €X, z = x.

1.5 Definition.

A subset X ¢ D is directed iff VYx,y € X 3 z € X, such that

1.6 Definition
A and B are complete lattices. A mapping f: A —> B is called

continuous iff f(Xx) = gf(X) for all directed X C A,

Here f(X) = {y = f(x)]x € X}. g means that a supremum is taken in set Dj

we usually omit D, since it will be clear from context.

Let [A — B] be the set of all continuous functions from A to B.

1.7 Definition.
Let D and D' be complete  lattices. Let $: D — D', ¥:D' — D
(®,¥) is called a projection pair iff

(i) ®,¥ are continuous

(ii) ¥x € D, ¥(9(x)) = x or ¥°@ is an identity .

(1i1) vx € D', o(¥(x)) =x



1.8 Definitionm.
Let (D,C) be an arbitrary nontrivial complete lattice. Define

D0 = D, Dn+l = [Qn—> Dn].

. n -
Define (Qn’?ﬁ) where Dn P Dn+1’ n=0,1,2,... where

X €D n

@O(x) = )y €D 0

O.X,

1y = ! . ot . N
Yox") = x (,LDO), x' €D ; .LDols nD,)-

And then, inductively, we define:

CI)n-!-l(x) = (I)no Xoll/n, x € Dn+l

' = s X'o 1
lynﬂ(x) ¥ox'ed , x' €D

n+2
Y ¥

n+l

. P S Dn< Dn+1 < Dn+2 < .
=
A\

>Dn 3 >Dn+l % >Dn+2 >,

n n+1

The inverse limit of the Dn's is called D_; i.e.,

[ee]
D, = {<xn>n=0 | T lyn(xn+l)’ % € Dn}'

1.8.1 Lemma.
Let D be a complete lattice. Then [D — D] is a complete lattice

under pointwise ordering: i.e., ft g <> yx £(x)Cg(x).

Corollary.

Vn, Dn is a complete lattice.

Definition.

Let x and y ¢ Dm; X = <X > and y = <Y > n=0" Then we say

x Ly iff yy x & Yp
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1.8.2 Theorem
Do is a complete lattice under the componentwise partial

ordering C.

1.9 Lemma

\

(i) ¥yn = 0O, (@n,Yn) is a projection pair

(ii) vn = O, @n and‘% are distributive.

1.10 Definition
Define a set of mappings inductively:

{e_,: D — D [n=0,1,2,...}

and {v D_—> Dn[n=0,1,2,...}

oo

(i) Define @Om: D — D

0 oo
Vxy € Dy O, (¥ = <yn>:='-0 €D,
such that Yo = ¥g* Yoa1 = @n(yn) n=0,1,2,...
i.e., @Ow(xo) = (XO,QO(XO), Qlféo(xo),...).

And define Wmoz D_— DO as follows:

[ee]
Vx = <x >

o =0 €D, Wmo(x) = X4

(ii) Let ®n+lw: Dn+l —> D_.

Then define ®n+lm(x) = @nmoxonn, x € Dn+1

and ‘Pmn +1: Do = Dpyp 28
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%4
= 1]
(x") =¥ _exTea , x' €D,

\Pcon‘i'l

In the last equation (x')ﬁ is used as a function on D _. It is defined
in (1.11).
1.11 Definition

[e e}
and y = <y > .  Then

[0
Let x ¢ D,y € D :i.e., x = <x > 2 n=0

n n=0
o, . : ke
x 1s a function from D, — D_, such that for any y, x (y) = z ¢ D,

[oo]

where z = <z > and
n n=0

(i) ZO = U{Xl(yo) alyo(xz (yl)) LIS Qlyoolyloi - -an(xn_*_z (yn+1)) ¢ .. }
1)z = Ul O Y G () Egotoeeo T)) s
1.12 Lemma

* . o, .
Let x € Dw. Then x ¢ [Doo — Qw]; i.e., X 1s a continuous

function from D to D .
(o] [s]

1.13 Lemma

¥f € [D,—> D] 3 x €D, such that f = .

So we see that (1.11) and (1.12) provide the following embedding:

x — x5 is the mapping D_— [D_—> D_]. We call it ¢. And Lemma
(1.13) gives the mapping from [D,— D] to D _. Call it VY.

1.14 Lemna

.. 1.

D 1is homeomorphic to [D_ —> D_] under a pair of isomorphisms (9,Y¥),

9
. —
i.e., D D, —> D_I.

0
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1.15 Definition

p ={e (x)xeD}CD.

o0
D_ is a subspace of D_, and obviously D =D .
n L n n

m

o .
Let Pn ¢ oY : D — Dn: i.e., a projection from the space D

no ooqn o

o0
into the subspace Dn' For convenience, we write X for Pn(x),

x € D _, and we write x(y) for x*(y) and f for Y(f).

1.16 Lemma
For all x and y € D_:
1 Lo =1-= np_,
(i1) T(y) =T = Up_

(iii) x = y iff X =y, for all n = 0.

It

1.17 Lemma

fee] [eo] (e o]

Dy LDy LD, L...ED L ...CD,.

C. D_ as a model for A-calculus

Since D = [Dm-—> Dm], it is an appropriate model for a language
where application is allowed without type limitations. Of course, then
D_ is a possible model for A-calculus, since if A and B are any terms,
then A(B) and B(A) are perfectly defined terms. Thus, we should be

able to map our language into the D, model.

1.18 Definition

(1) Let p: {variables} —> D_, 0 is called a valuation in D_.
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(ii) For d € D_ and x a variable, p(d/x) = p', where p' is a valuation

in D_, such that p'(y) = p(y) if y # x and p'(x) = d.
(iii) The interpretation { of any term A in D_ under p is denoted
20 AT (p) and is a mapping from the set of A-terms into the D_. It is
defined inductively:
(s1) 2flx1 (p) = p(x), where x is a variable.
(s2) 2] (o) = MM (p)) RUNT (o).

(s3) 2l ax.M1 (p) = ¥(Ad € D_.RI[MT (p(d/x))).

1.19 Theorem
Axioms (p), (8), (1), (subst.), (a), (B), (n) of (1.2) are valid

formulas under the D interpretation.

1.20 Theorem

Doo is a model for A-calculus.

D. A characterization of L in D_.

The following is due to Wadsworth (1976).

1.21 Definition

Each A-term M is of the form M = Axl...xn . (Ax.P) QMl"'Mﬁ

or M = Axj...X X AA)..LA L (Ax.P) is called the head redex of M.

In the second case xi is the head variable of M and M is said to be in

a head normal form (compare with the definition of the normal form in

(1.1)).

1.22 Definition

Let M and N be terms. Then we say ML N iff J[MJJ(p) LY N I (p) for
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any valuation p € (Var — D ).  Var is a set of all variables.
s o]

Lemma

ML N <=> C[M] L C[N] for all contexts C[ ].

1.2 3 Definition

We say that M = N iff, for all contexts C[ ]:
W

if C[M] has a head normal form,
then C[N] has the same head normal form.

Here = stands for Wadsworth's ordering relation.
W

1.2 4 Theorem (Wadsworth)

For all terms M and N

M=N<>MTLN.
W

Here we would like to emphasize the importance of this theorem.

Theorem (1.2 4) establishes the relation between the purely syntactical
concept of the "head normal form" and the semantical relation "L" in D_.
Thus, we have this important link befween syntactical form and semantical
content. Historically, this kind of property made mathematics a
deductive science and created the science of mathematical logic.

With this in mind, we attempt to explore this link and the deductive

reasoning system behind it.
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