
CS611 Lecture 21 Denotational Semantics of REC 18 October 2006
Lecturer: Dexter Kozen

1 A Metalanguage for Domain Constructions

Last time we did several constructions that required us to check that various domains were CPOs and that
various associated operations were continuous. How can we avoid doing this kind of check over and over
again? One solution is to create an abstract metalanguage consisting of some basic operations that will
allow us to do domain constructions (like function spaces, direct products, etc.) and that will ensure that
the domains that are constructed are CPOs and the associated functions are continuous. We can compose
these constructions to create more complicated domains from simpler ones and always be assured that the
desired mathematical properties hold.

The simplest objects will be the discrete CPOs Z, N and U for the integers, the natural numbers, and
the unit domain, respectively. The unit domain contains a single element unit. These all have the discrete
order, meaning that if x v y, then x = y.

For any domain A, we can construct a new domain A⊥, which is A adjoined with a new element ⊥
below all the previous elements. Note that ⊥ is intended to be a new element, so we can actually iterate
this operation. The associated operations are the natural embedding D → D⊥ and the lifting operation
(·)∗ : (D → E⊥) → (D⊥ → E⊥) defined by

(d)∗(x)
4
=

{
d(x), if x 6= ⊥,
⊥, if x = ⊥.

Both these operations are continuous.
Given CPOs D and E, we can form the product D×E consisting of all ordered pairs 〈d, e〉 with d ∈ D and

e ∈ E, ordered componentwise. This is the set-theoretic Cartesian product of D and E with 〈d, e〉 v 〈d′, e′〉
iff d v d′ and e v e′. This is a CPO, and it is easy to check that

⊔
d∈X, e∈Y 〈d, e〉 = 〈

⊔
X,

⊔
Y 〉. Along

with the product constructor come the projections π1 and π2 defined by π1(〈d, e〉) = d and π2(〈d, e〉) = e,
which are continuous. If f : C → D and g : C → E, then the function 〈f, g〉 : C → D × E defined by

〈f, g〉 4
= λx. 〈f(x), g(x)〉 is continuous if f and g are. This is the unique function satisfying the equations

f = π1 ◦ 〈f, g〉 and g = π2 ◦ 〈f, g〉. The binary product can be generalized to an arbitrary product
∏

x∈X Dx

with associated projections πy :
∏

x∈X Dx → Dy.
Given CPOs D and E, we can form the sum (or coproduct) D + E, corresponding to the disjoint union

of D and E. We would like to take the union of the sets D and E, but we need to mark the elements to
make sure we can tell which set they originally came from in case D and E have a nonempty intersection.
To do this, we define

D + E
4
= {in1(d) | d ∈ D} ∪ {in2(e) | e ∈ E},

where in1 and in2 are any one-to-one functions with disjoint ranges; for example, we could take in1(x) = 〈1, x〉
and in2(x) = 〈2, x〉. We define ini(x) v inj(y) iff i = j and x v y. Any chain in D + E must be completely
contained in {in1(x) | x ∈ D} or {in2(x) | x ∈ E}, so D + E is a CPO. The associated operations are the
injections in1 : D → D + E and in2 : E → D + E, which are continuous. If f : D → C and g : E → C, then
we can combine f and g into a function f + g : D + E → C using a case construct:

f + g
4
= λx. case x of in1(y) → f(y) | in2(y) → g(y).

This is continuous if f and g are, and it is the unique function satisfying the equations f = (f + g) ◦ in1 and
g = (f + g) ◦ in2. As with products and projections, the binary coproduct can be generalized to an arbitrary
coproduct

∑
x∈X Dx with associated injections iny : Dy →

∑
x∈X Dx.

Finally, given CPOs D and E, we can define the CPO [D → E ] of all continuous functions from D to E
with the pointwise ordering. The corresponding operations are:

1



1. apply : [D → E ]×D → E that applies a given function to a given argument;

2. compose : [E → F ]× [D → E ] → [D → F ];

3. curry : [D × E → F ] → [D → [E → F ] ];

4. uncurry : [D → [E → F ] ] → [D × E → F ]; and most importantly,

5. fix : [D → D ] → D, defined by λg ∈ [D → D ].
⊔
gn(⊥), that takes a function and returns its least

fixpoint. To apply fix, D must have a bottom element ⊥.

All these functions are continuous.

2 Denotational Semantics for REC

2.1 REC Syntax

p ::= let d in e

d ::= f1(x1, . . . , xa1) = e1
...
fn(x1, . . . , xan) = en

e ::= n | x | e1 ⊕ e2 | let x = e1 in e2 | ifp e0 then e1 else e2 | fi(e1, . . . , eai)

The functions in d are mutually recursive. It is reasonable to expect that under most semantics, let f1(x1) =
f1(x1) in f1(0) will loop infinitely, but let f1(x1) = f1(x1) in 0 will halt and return 0.

For example,

let

f1(n,m) = ifp m2 − n then 1 else (n−m(n div m)) · f1(n,m+ 1)
f2(n) = ifp f1(n, 2) then n else f2(n+ 1)

in

f2(1000)

In this REC program, f2(n) finds the first prime number p ≥ n. The value of n−m(n div m is positive
iff m does not divide n.

2.2 CBV Denotational Semantics for REC

The meaning function is [[e ]] ∈ FEnv → Env → Z⊥, where FEnv and Env denote the sets of variable
environments and function environments, respectively, as used in REC.

ρ ∈ Env = Var → Z
ϕ ∈ FEnv = (Za1 → Z⊥) × · · · × (Zan → Z⊥)

Here Var is a countable set of variables, Z is the set of integers, which are the values that can be bound
to a variable in an environment, and Zm = Z× Z× · · · × Z︸ ︷︷ ︸

m times

.

2



[[n ]]ϕρ
4
= n

[[x ]]ϕρ
4
= ρ(x)

[[e1 ⊕ e2 ]]ϕρ
4
= let v1 ∈ Z = [[e1 ]]ϕρ in

let v2 ∈ Z = [[e2 ]]ϕρ in

v1 ⊕ v2

= [[e1 ]]ϕρ ⊕⊥ [[e2 ]]ϕρ

[[ let x = e1 in e2 ]]ϕρ
4
= let y ∈ Z = [[e1 ]]ϕρ in

[[e2 ]]ϕρ[y/x]

[[ ifp e0 then e1 else e2 ]]ϕρ
4
= let v0 ∈ Z = [[e0 ]]ϕρ in

if v0 > 0 then [[e1 ]]ϕρ else [[e2 ]]ϕρ

[[fi(e1, . . . , eai)]]ϕρ
4
= let v1 ∈ Z = [[e1 ]]ϕρ in

...
let vai ∈ Z = [[eai ]]ϕρ in

(πi ϕ)〈v1, . . . , vai〉

The meaning of a program let d in e is

[[ let d in e ]]
4
= [[e ]]ϕρ,

where ρ is some initial environment containing default values for the variables, and

ϕ = fix λψ ∈ FEnv. 〈λv1 ∈ Z, . . . , va1 ∈ Z. [[e1 ]]ψ ρ[v1/x1, . . . , va1/xa1 ],
...

λv1 ∈ Z, . . . , van
∈ Z. [[en ]]ψ ρ[v1/x1, . . . , van

/xan
]〉.

For this fixpoint to exist, we need to know that FEnv a pointed CPO. But FEnv is a product, and a
product is a pointed CPO when each factor is a pointed CPO. Each factor Zai → Z⊥ is a pointed CPO, since
a function is a pointed CPO when the codomain of that function is a pointed CPO, and Z⊥ is a pointed
CPO. Therefore, FEnv is a pointed CPO.

We also need to know that the function FEnv → FEnv to which we are applying fix is continuous, but
it is because is written using the metalanguage.

2.3 CBN Denotational Semantics

The denotational semantics for CBN is the same as for CBV with two exceptions:

[[ let x = e1 in e2 ]]ϕρ
4
= [[e2 ]]ϕρ[[[e1 ]]ϕρ/x]

[[fi(e1, . . . , eai
)]]ϕρ

4
= (πi ϕ)〈[[e1 ]]ϕρ, . . . , [[eai

]]ϕρ〉.

3


