1 Reprise

Last time, guided by the intuition that the programs while b do c and if b then c; while b do c else skip should be equivalent, we defined the denotation of the statement while b do c as the least solution to the equation

$$
\mathcal{W} \triangleq \lambda \sigma \in \Sigma \cdot \begin{cases}(\mathcal{W})^{*}(\mathcal{C} \llbracket c \rrbracket \sigma), & \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \\ \sigma, & \text { otherwise }\end{cases}
$$

in $\Sigma \rightarrow \Sigma_{\perp}$; that is, the least fixpoint of the operator

$$
F \triangleq \lambda w \in \Sigma \rightarrow \Sigma_{\perp} \cdot \lambda \sigma \in \Sigma . \begin{cases}(w)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma), & \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \\ \sigma, & \text { otherwise }\end{cases}
$$

of type $\left(\Sigma \rightarrow \Sigma_{\perp}\right) \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)$. More simply, we might write

$$
F \triangleq \lambda w \in \Sigma \rightarrow \Sigma_{\perp} . \lambda \sigma \in \Sigma \text {. if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }(w)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma
$$

with the understanding that the if-then-else here is purely mathematical. Here if $w: \Sigma \rightarrow \Sigma_{\perp}$, then $(w)^{*}: \Sigma_{\perp} \rightarrow \Sigma_{\perp}$ is the lift of w, which sends \perp to \perp and x to $w(x)$ for $x \in \Sigma-\{\perp\}$. In order to show that the least fixpoint of F exists, we will apply the Knaster-Tarski theorem. However, we only proved the Knaster-Tarski theorem for the partial order of subsets of some universal set ordered by set inclusion \subseteq. We need to extend it to the more general case of chain-complete partial orders (CPOs). To apply this theorem, we must know that the function space $\Sigma \rightarrow \Sigma_{\perp}$ is a CPO and that F is a continuous map on this space.

2 Chain-Complete Partial Orders and Continuous Functions

Recall that a binary relation \sqsubseteq on a set X is a partial order if it is

- reflexive: $x \sqsubseteq x$ for all $x \in X$;
- transitive: for all $x, y, z \in X$, if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$;
- antisymmetric: for all $x, y \in X$, if $x \sqsubseteq y$ and $y \sqsubseteq x$, then $x=y$.

It is a total order if for all $x, y \in X$, either $x \sqsubseteq y$ or $y \sqsubseteq x$.
If $A \subseteq X$, we say that x is an upper bound for A if $y \sqsubseteq x$ for all $y \in A$. We say that x is a least upper bound or supremum of A if x is an upper bound for A, and for all other upper bounds y of $A, x \sqsubseteq y$.

Upper bounds and suprema need not exist. For example, the set of natural numbers \mathbb{N} under its natural order \leq has no supremum in \mathbb{N}. However, if the supremum of any set exists, it is unique. A partially ordered set is said to be complete if all subsets have suprema. The supremum of a set C, if it exists, is denoted $\bigsqcup C$.

Note that all elements of X are (vacuously) upper bounds of the empty set \varnothing, so if the supremum of \varnothing exists, then it is necessarily the least element of the entire set. In this case we give it the name \perp.

A chain is a subset of X that is totally ordered by \sqsubseteq. For example, in the partial order of subsets of $\{0,1,2\}$ ordered by set inclusion, the set $\{\varnothing,\{2\},\{1,2\},\{0,1,2\}\}$ is a chain. A partially ordered set is chain-complete if all nonempty chains have suprema. A chain-complete partially ordered set is called a CPO. The empty chain \varnothing is not included in the definition of chain-complete, but if the empty chain also has a supremum, then it is necessarily the least element \perp of the CPO. A CPO with a least element \perp is called pointed.

Let X and Y be CPOs (we'll use \sqsubseteq to denote the partial order in both X and Y). A function $f: X \rightarrow Y$ is monotone if f preserves order; that is, for all $x, y \in X$, if $x \sqsubseteq y$ then $f(x) \sqsubseteq f(y)$. For example, the exponential function $\lambda x . e^{x}: \mathbb{R} \rightarrow \mathbb{R}$ is monotone. A function $f: X \rightarrow Y$ is continuous if f preserves suprema
of nonempty chains; that is, if $C \subseteq X$ is a nonempty chain in X, then $\bigsqcup_{x \in C} f(x)$ exists and equals $f(\bigsqcup C)$. Here $\bigsqcup_{x \in C} f(x)$ is alternate notation for $\bigsqcup\{f(x) \mid x \in C\}$.

Every continuous map is monotone: if $x \sqsubseteq y$, then $y=\bigsqcup\{x, y\}$, so by continuity $f(y)=f(\bigsqcup\{x, y\})=$ $\sqcup\{f(x), f(y)\}$, which implies that $f(x) \sqsubseteq f(y)$.

In the definition of continuity, we excluded the empty chain \varnothing. If it were included, then a continuous function would have to preserve \perp; that is, $f(\perp)=\perp$. A continuous function that satisfies this property is called strict. We do not include \varnothing in the definition of continuous functions, because we wish to consider non-strict functions, such as the F of section 1.

3 The Knaster-Tarski Theorem in CPOs

Let $F: D \rightarrow D$ be any continuous function on a pointed CPO D. Then F has a least fixpoint fix $F \triangleq$ $\bigsqcup_{n} F^{n}(\perp)$. The proof is a direct generalization of the proof for set operators given in Lecture 7, where \perp was \varnothing and \bigsqcup was \bigcup. In a nutshell: by monotonicity, the $F^{n}(\perp)$ form a chain; since D is a CPO, the supremum fix F of this chain exists; and by continuity, fix F is preserved by F.

4 Flat Domains

Let S be a set with the discrete ordering, which means that any two distinct elements of S are \sqsubseteq-incomparable. We can make S into a pointed CPO S_{\perp} by adding a new bottom element \perp and defining $\perp \sqsubseteq \perp \sqsubseteq x \sqsubseteq x$ for all $x \in S$, but nothing else. This is called a flat domain. For example, \mathbb{N}_{\perp} looks like

Any flat domain is chain-complete, since every chain is finite, and every finite nonempty chain has a maximum element, which is its supremum.

5 Continuous Functions on CPOs Form a CPO

Now we claim that if C and D are CPOs, then the space of continuous functions $f: C \rightarrow D$ is a CPO under the pointwise ordering

$$
f \sqsubseteq g \quad \stackrel{\Delta}{\Longleftrightarrow} \quad \forall x \in C \quad f(x) \sqsubseteq g(x) .
$$

This space is denoted $[C \rightarrow D]$. It is easily verified that \sqsubseteq is a partial order on $[C \rightarrow D]$. If D is pointed with bottom element \perp, then $[C \rightarrow D]$ is also pointed with bottom element $\perp \triangleq \lambda x \in C . \perp$.

We need to show that $[C \rightarrow D]$ is chain-complete. Let \mathcal{C} be a nonempty chain in $[C \rightarrow D]$. Define

$$
G \triangleq \lambda x \in C . \bigsqcup_{g \in \mathcal{C}} g(x) .
$$

First, G is a well-defined function, since for any $x \in C,\{g(x) \mid g \in \mathcal{C}\}$ is a chain in D, therefore its supremum $\bigsqcup_{g \in \mathcal{C}} g(x)$ exists. Also, the function G is continuous, since for any nonempty chain E in C,

$$
\begin{array}{rlr}
G(\bigsqcup E) & =\bigsqcup_{g \in \mathcal{C}} g(\bigsqcup E) & \text { by the definition of } G \\
& =\bigsqcup_{g \in \mathcal{C}} \bigsqcup_{x \in E} g(x) & \text { since each } g \in \mathcal{C} \text { is continuous } \\
& =\bigsqcup_{x \in E} \bigsqcup_{g \in \mathcal{C}} g(x) & \text { by the lemma below } \\
& =\bigsqcup_{x \in E} G(x) & \text { again by the definition of } G .
\end{array}
$$

The third step in the above argument uses the following lemma.
Lemma If $a_{x y}$ is a doubly-indexed collection of members of a partially ordered set such that
(i) for all $x, \bigsqcup_{y} a_{x y}$ exists,
(ii) for all $y, \bigsqcup_{x} a_{x y}$ exists, and
(iii) $\bigsqcup_{y} \bigsqcup_{x} a_{x y}$ exists,
then $\bigsqcup_{x} \bigsqcup_{y} a_{x y}$ exists and is equal to $\bigsqcup_{y} \bigsqcup_{x} a_{x y}$.
Proof. Clearly $\bigsqcup_{y} \bigsqcup_{x} a_{x y}$ is an upper bound for all $a_{x y}$, therefore it is an upper bound for all $\bigsqcup_{y} a_{x y}$; and if b is any other upper bound for all $\bigsqcup_{y} a_{x y}$, then $a_{x y} \sqsubseteq b$ for all x, y, therefore $\bigsqcup_{y} \bigsqcup_{x} a_{x y} \sqsubseteq b$, so $\bigsqcup_{y} \bigsqcup_{x} a_{x y}$ is the least upper bound for all $\bigsqcup_{y} a_{x y}$; that is, $\bigsqcup_{x} \bigsqcup_{y} a_{x y}=\bigsqcup_{y} \bigsqcup_{x} a_{x y}$.

To apply this lemma, we need to know that
(i) for all $g \in \mathcal{C}, \bigsqcup_{x \in E} g(x)$ exists,
(ii) for all $x \in E, \bigsqcup_{g \in \mathcal{C}} g(x)$ exists, and
(iii) $\bigsqcup_{g \in \mathcal{C}} \bigsqcup_{x \in E} g(x)$ exists.

But (i) holds because all $g \in \mathcal{C}$ are continuous, therefore $\bigsqcup_{x \in E} g(x)=g(\bigsqcup E)$; (ii) holds because $\{g(x) \mid g \in$ $\mathcal{C}\}$ is a chain in D, and D is chain-complete; and (iii) follows from (i) and (ii) by taking $x=\bigsqcup E$.

6 Fixpoints and the Semantics of while-do

Now let's return to the denotational semantics of the while loop. We previously defined the function

$$
\begin{aligned}
& F \quad: \quad\left(\Sigma \rightarrow \Sigma_{\perp}\right) \quad \rightarrow \quad\left(\Sigma \rightarrow \Sigma_{\perp}\right) \\
& F \triangleq \quad \triangleq \quad \lambda w \in \Sigma \Sigma_{\perp} \cdot \lambda \sigma \in \Sigma \text {. if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }(w)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma .
\end{aligned}
$$

Any function $\Sigma \rightarrow \Sigma_{\perp}$ is continuous, since chains in the discrete space Σ contain at most one element, thus the space of functions $\Sigma \rightarrow \Sigma_{\perp}$ is the same as the space of continuous functions [$\Sigma \rightarrow \Sigma_{\perp}$]. Moreover, the lift $(w)^{*}: \Sigma_{\perp} \rightarrow \Sigma_{\perp}$ of any function $w: \Sigma \rightarrow \Sigma_{\perp}$ is continuous.

By previous arguments, the function space $\left[\Sigma \rightarrow \Sigma_{\perp}\right]$ is a pointed CPO, and F maps this space to itself. To obtain a least fixpoint by Knaster-Tarski, we need to know that F is continuous.

Let's first check that it is monotone. This will ensure that, when trying to check the definition of continuity, when C is a chain, $\{F(d) \mid d \in C\}$ is also a chain, so that $\bigsqcup_{d \in C} F(d)$ exists. Suppose $d \sqsubseteq d^{\prime}$. We want to show that $F(d) \sqsubseteq F\left(d^{\prime}\right)$. But for all σ,

$$
\begin{aligned}
F(d)(\sigma) & =\text { if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }(d)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma \\
& \sqsubseteq \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }\left(d^{\prime}\right)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma \\
& =F\left(d^{\prime}\right)(\sigma) .
\end{aligned}
$$

Here we have used the fact that the operator $(\cdot)^{*}$ is monotone, which is easy to check.
Now let's check that F is continuous. Let C be an arbitrary chain. We want to show that $\bigsqcup_{d \in C} F(d)=$ $F(\bigsqcup C)$. We have

$$
\begin{aligned}
\bigsqcup_{d \in C} F(d) & =\bigsqcup_{d \in C} \lambda \sigma . \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }(d)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma \\
& =\lambda \sigma . \bigsqcup_{d \in C} \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }(d)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma \\
& =\lambda \sigma . \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then } \bigsqcup_{d \in C}(d)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma \\
& =\lambda \sigma . \text { if } \mathcal{B} \llbracket b \rrbracket \sigma \text { then }(\bigsqcup C)^{*}(\mathcal{C} \llbracket c \rrbracket \sigma) \text { else } \sigma=F(\lfloor C),
\end{aligned}
$$

since $\mathcal{B} \llbracket b \rrbracket \sigma$ does not depend on d and since the lift operator $(\cdot)^{*}$ is continuous.

