CS611 Lecture 18 Continuations and Exceptions 11 October 2006

Lecturer: Dexter Kozen

Last time we introduced CPS as a restriction on the A-calculus. This was helpful because programs
written in this restricted A-calculus have a much simpler operational semantics. In fact, we defined the
operational semantics using only a single rule. Another advantage to CPS is that evaluation order decisions
are already determined. In general, CPS style is a more primitive model of computation and therefore easier
to compile.

Today we give CPS semantics for uML as a translation to a restricted form of uML. Our translation will
also produce strongly-typed uML programs. Then we will extend the translation to uML!. Finally, we show
how to extend uML to support exception handling.

1 CPS Semantics for uML with Strong Typing
1.1 Value Translation
To support strong typing, we introduce type tags that can be used to tag each value with its type.

booleans 0 empty list 2 functions 4
integers 1 pairs 3 error 5

We can define functions NULL, BOOL, INT, PAIR, FUN, etc. to tag a raw value with its type; for example,

BOOL true = (0, true). These can all be defined in terms of a function TAG 2 M. (t,z). Then BOOL =
TAG 0, etc.

We also define functions CHECK-NULL, CHECK-BOOL, CHECK-INT, CHECK-PAIR, CHECK-FUN,
etc. to check that a given tagged value is of the correct type, extract the original raw value, and pass it to a
continuation. For example, CHECK-PAIR is defined as:

CHECK-PAIR 2 kv.if #1 v = 3 then k (#2 v) else halt ERROR

where the parameter k is a continuation and the parameter v is a tagged value. If the tag is 3, indicating
that the raw value is a pair, then we pass the raw value to the continuation. Otherwise we have encountered
a runtime type error, so we halt and return an error value. We can also define these functions uniformly in
terms of a function

CHECK 2 )tho.if #1 v =1t then k (#2 v) else halt ERROR
Then CHECK-PAIR = CHECK 3, etc. These implementations satisfy the equations

kv, ift=1¢,

/ _
CHECKt k (TAG t'v) = { halt ERROR, ift £t

Note that the continuation-passing style affords some flexibility in the way errors are handled. We need
not call the continuation k, but may instead call a different continuation (halt in this example) corresponding
to an error or exception handler.



1.2 Expression Translation

Translations are of the form £[e]pk, which means, “Send the value of the expression e evaluated in the
environment p to the continuation k£.” The translations are:

Elz]pk 2 k(LOOKUP p “z”)
Eln]pk 2 &k (INTn)
El(er,ea)] pk 2 Eler] p (Mv1.EJe2] p (Ava. k (PAIR (v1, v2))))
E[#1e]pk 2 E[e] p(CHECK-PAIR (Ap. k (#1 p))
E[Az.e]pk 2k (FUN(A\yK'.E[e] (UPDATE p “x” y)k'))
= k(FUN(\y.E[e] (UPDATE p “x” y)))
Eleo er] pk £ Eleo] p (CHECK-FUN (A\f.E[e1] p (Av. fok)))
E[if eg then ey else ex] pk 2 Eleo]l p (CHECK-BOOL (Ab.if b then E[e1] pk else E[ex] pk)).

2 CPS Semantics for uML!
2.1 Syntax

Since uML! has references, we need to add a store o to our notation. Thus we now have translations with
the form E[e]pko, which means, “Evaluate e in the environment p with store ¢ and send the resulting value
and the new store to the continuation k£.” A continuation is now a function of a value and a store; that is,
a continuation k should have the form Avo. ---

The translation is:

e Variable: E[z] pko 2k (LOOKUP p “x”) o.

If we think about this translation as a function and n-reduce away the o, we obtain

Elz]pk = No.k (LOOKUP p “z”) o = k (LOOKUP p “a").

Note that in the n-reduced version, we have the same translation that we had when we translated uML.
In general, any expression in uML! that is not state-aware can be n-reduced to the same translation as
uML. Thus in order to translate to uML!, we need to add translation rules only for the functionality that is
state-aware.

We assume that we have a type tag for locations and functions LOC and CHECK-LOC for tagging values
as locations and checking those tags. We also assume that we have extended our LOOKUP and UPDATE
functions to apply to stores.

Eref e] pko 2 Ele] p(Mva'.let (¢,0") = (MALLOC ¢’ v) in k (LOC¥) ¢") o
Elle] pk 2 E[e] p(CHECK-LOC (Mo'. k (LOOKUP o' “0”) o))
Eler :==ex] pk = Ele1] p(CHECK-LOC (M. E[e2] p (Ao’ k (NULL 0) (UPDATE o' “0” v))))

3 Exceptions

An exception mechanism allows non-local transfer of control in exceptional situations. It is typically used
to handle abnormal, unexpected, or rarely occurring events. It can simplify code by allowing programmers
to factor out these uncommon cases.

To add an exception handling mechanism to uML, we first extend the syntax:

e == ... | raisese | try e; handle (s ) ey



Informally, the idea is that handle provides a handler es to be invoked when the exception named s is
encountered inside the expression e;. To raise an exception, the program calls raise s e, where s is the name
of an exception and e is an expression that will be passed to the handler as its argument zx.

Most languages use a dynamic scoping mechanism to find the handler for a given exception. When an
exception is encountered, the language walks up the runtime call stack until a suitable exception handler is
found.

3.1 Exceptions in uML

To add exception support to our CPS translation, we add a handler environment h, which maps exception
names to continuations. We also extend our LOOKUP and UPDATE functions to accommodate handler
environments. Applied to a handler environment, LOOKUP returns the continuation bound to a given
exception name, and UPDATE rebinds an exception name to a new continuation.

Now we can add exception support to our translation:

E[raisese] pkh £ Ele] p(LOOKUP h “s”) h
E[tryer handle (sz) ex] pk h 2 Ele1] pk (UPDATE h “s” (Av.E[e2](UPDATE p “a” v) kh))
Elha.e]pkh 2 k (FUNOyE'L . E[e] (UPDATE p “2” y) k' h'))
=k (FUN(X\y.£[e] (UPDATE p “z” y)))

1>

Eleo er] pkh Eleo] p (CHECK-FUN (Af.E[e1] p (Av. fvkh)))

There are some subtle design decisions captured by this translation. For example, if e; raises exception
s in try ey handle (sx) eg, in this translation es will not be invoked again. That is, es cannot be invoked
recursively.



