
CS611 Lecture 17 CPS Conversion 6 October 2006
Lecturer: Dexter Kozen

1 Outline

• Continuation-passing style (CPS)

• CPS semantics

• CPS conversion

• uML error checking

2 Continuation-Passing Style

Consider the statement if x ≤ 0 then x else x+1. We can think of this as (λy. if y then x else x+1) (x ≤ 0).
To evaluate this, we would first evaluate the argument x ≤ 0 to obtain a Boolean value, then apply the
function λy. if y then x else x+1 to this value. The function λy. if y then x else x+1 is called a continuation,
because it specifies what is to be done with the result of the current computation in order to continue the
computation.

Given an expression e, it is possible to transform the expression into a function that takes a continuation k
and applies it to the value of e. The transformation is applied recursively. This is called continuation-passing
style (CPS). There are a number of advantages to this style:

• The resulting expressions have a much simpler evaluation semantics, since the sequence of reductions
to be performed is specified by a series of continuations. The next reduction to be performed is always
uniquely determined, and the remainder of the computation is handled by a continuation. Thus
evaluation contexts are not necessary to specify the evaluation order.

• In practice, function calls and function returns can be handled in a uniform way. Instead of returning,
the called function simply calls the continuation.

• In a recursive function, any computation to be performed on the value returned by a recursive call can
be bundled into the continuation. Thus every recursive call becomes tail-recursive. For example, the
factorial function

fact n = if n = 0 then 1 else n ∗ fact (n− 1)

becomes

fact′ n k = if n = 0 then k 1 else fact′ (n− 1) (λv. k (n ∗ v)).

One can show inductively that fact′ n k = k (fact n), therefore fact′ n λx. x = fact n. This transfor-
mation effectively trades stack space for heap space in the implementation.

• Continuation-passing gives a convenient mechanism for non-local flow of control, such as goto state-
ments and exception handling.

3 CPS Semantics

Our grammar for the λ-calculus was:

e ::= x | λx. e | e0 e1

Our grammar for the CPS λ-calculus will be:

v := x | λx. e e ::= v0 v1 · · · vn

1

This is a highly constrained syntax. Barring reductions inside the scope of a λ-abstraction operator, the
expressions v are all irreducible. The only reducible expression is v0 v1 · · · vn. If n ≥ 1, there exactly one
redex v0 v1, and both the function and the argument are already fully reduced. The small step semantics
has a single rule

(λx. e) v → e{v/x},

and we do not need any evaluation contexts.
The big step semantics is also quite simple, with only a single rule:

e{v/x} ⇓ v′

(λx. e) v ⇓ v′
.

The resulting proof tree will not be very tree-like. The rule has one premise, so a proof will be a stack of
inferences, each one corresponding to a step in the small-step semantics. This allows for a much simpler
interpreter that can work in a straight line rather than having to make multiple recursive calls.

4 CPS Conversion

We now give a translation into the CPS calculus. The translation takes an arbitrary λ-term e and produces
a CPS term [[e]] which is a function taking a continuation as argument. Intuitively, [[e]]k applies k to the
value of e.

We want our translation to satisfy e
∗−→

CBV
v ⇔ [[e]]k ∗−→

CPS
[[v]]k for primitive values v and any variable

k /∈ FV(e), and e ⇑CBV ⇔ [[e]]k ⇑CPS .
The translation is (adding numbers as primitive values):

[[n]]k
4
= k n

[[x]]k
4
= k x

[[λx. e]]k
4
= k (λx. [[e]]) = k (λxk′. [[e]]k′)

[[e0 e1]]k
4
= [[e0]](λf. [[e1]](λv. fvk)).

(Here we have defined [[e]] in the style of ML; thus [[e]]k
4
= e′ really means [[e]]

4
= λk. e′.)

4.1 An Example

In the CBV λ-calculus, we have

(λxy. x) 1 → λy. 1

Let’s evaluate the CPS-translation of the left-hand side using the CPS evaluation rules.

[[(λxy. x) 1]]k = [[λx. λy. x]](λf. [[1]](λv. fvk))
→ (λf. [[1]](λv. fvk)) (λx. [[λy. x]])
→ [[1]](λv. (λx. [[λy. x]]) v k)
→ (λv. (λx. [[λy. x]]) v k) 1
→ (λx. [[λy. x]]) 1 k

→ [[λy. 1]]k.

2

5 Error Checking

Now let us use CPS semantics to augment our previously defined uML language translation so that it supports
error checking. This time our translated expressions will be functions of ρ and k denoting an environment
and a continuation, respectively. The term E [[e]]ρk represents the result of evaluating e in the environment
ρ and sending the resulting value to the continuation k.

Assume that we have an encoding of variable names that will allow us to represent an environment ρ as
a list of (name,value) pairs, along with lookup and update functions LOOKUP ρ “x” and UPDATE ρ “x” v.

In addition, we want to catch type errors that may occur during the evaluation. We use the following
tags to keep track of types:

booleans 0 empty list 2 functions 4
integers 1 pairs 3 error 5

A tagged value is a value paired with its type tag; for example, (0, true). Using these tagged values, we can
now define a translation that incorporates runtime type checking:

E [[x]]ρk
4
= k (LOOKUP ρ “x”)

E [[b]]ρk
4
= k (0, b)

E [[n]]ρk
4
= k (1, n)

E [[nil]]ρk
4
= k (2, 0)

E [[(e0, e1)]]ρk
4
= E [[e0]] ρ (λx0. E [[e1]] ρ (λx1. k (3, (x0, x1))))

E [[let x = e1 in e2]]ρk
4
= E [[e1]] ρ (λp. E [[e2]] (UPDATE ρ “x” p) k)

E [[λx. e]]ρk
4
= k (4, λxk. E [[e]] (UPDATE ρ “x” x) k)

E [[error]]ρk
4
= k (5, 0).

Now a functional application can check that it is actually applying a function:

E [[e0 e1]]ρk
4
= E [[e0]] ρ (λp. let (t, f) = p in if t 6= 4 then error else E [[e1]] ρ (λv. fvk))

We can simplify this by defining a helper function check-fn:

check-fn
4
= λkp. let (t, f) = p in if t 6= 4 then error else kf.

The helper function takes in a continuation and a tagged value, checks the type, strips off the tag, and passes
the raw (untagged) value to the continuation. Then

E [[e0 e1]]ρk
4
= E [[e0]] ρ (check-fn (λf. E [[e1]] ρ (λv. fvk))).

Similarly,

E [[if e0 then e1 else e2]]ρk
4
= E [[e0]] ρ (check-bool (λb. if b then E [[e1]]ρk else E [[e2]]ρk))

E [[#n e]]ρk
4
= E [[e]] ρ (check-pair (λt. k (#n t))).

3

