
CS611 Lecture 12 Modules and State 25 September 2006
Lecturer: Dexter Kozen

1 Introduction

In the last two lectures, we studied the static and dynamic approaches to variable scoping. These scoping
disciplines are mechanisms for binding names to values so that the values can later be retrieved by their
assigned name.

Both static and dynamic naming strategies are hierarchical in the sense that variables enter and leave
scope according to the program’s abstract syntax tree (in the case of static scoping) or the tree of function
calls (in dynamic scoping). This dependence on hierarchy might prove restrictive or inflexible for writing
certain kinds of programs. In such cases we might want a more liberal naming discipline that is independent
of any hierarchy induced by the syntactic structure or call structure.

Such a non-hierarchical scoping structure is provided by modules. A module is like a software black
box with its own local namespace. It can export resources as a set of names without revealing its internal
composition. Thus the names that can be used at a certain point in a program need not “come down from
above” but can also be names exported by modules.

Good programming practices encourage modularity, especially in the construction of large systems. Pro-
grams should be composed of discrete components that communicate with one another along small, well-
defined interfaces and are reusable. Modules are consistent with this idea. Each module can treat the others
as black boxes; that is, they know nothing about what is inside the other module except as revealed by the
interface.

Early programming languages had one global namespace in which names of all functions in source files
and libraries were visible to all parts of the program. This was the approach for example of FORTRAN and
C. There are certain problems with this:

• The various parts of the program can become tightly coupled. In other words, the global namespace
does not enforce the modularity of the program. Replacing any particular part of the program with
an enhanced equivalent can require a lot of effort.

• Undesired name collisions occur frequently, since names inevitably tend to coincide.

• In very large programs, it is difficult to come up with unique names, thus names tend to become
non-mnemonic and hard to remember.

A solution to this problem is for the language to provide a module mechanism that allows related functions,
values, and types to be grouped together into a common context. This allows programmers to create a local
namespace, thus minimizing naming conflicts. Examples of modules are classes in Java and C++, packages
in Java, or structures in ML. Given a module, we can access the variables in it by qualifying the variable
names with the name of the module, or we can import the whole namespace of the module into our code, so
we can use the module’s names as if they had been declared locally.

2 Modules

A module is a collection of named things (such as values, functions, types etc.) that are somehow related to
one another. The programmer can choose which names are public (exported to other parts of the program)
and which are private (inaccessible outside the module).

There are usually two ways to access the contents of a module. The first is with the use of a selector
expression, where the name of the module is prefixed to the variable in a certain way. For instance, we write
m.x in Java and m::x in C++ to refer to the entity with name x in the module m.

The second method of accessing the contents of a module is to use an expression that brings names from
a module into scope for a section of code. For example, we can write something like with m do e, which
means that x can be used in the block of code e without prefixing it with m. In ML, for instance, the

1

command “Open List” brings names from the module List into scope. In C++ we write “using namespace
module name;” and in Java we write “import module name;” for the similar purposes.

Another issue is whether to have modules as first class or second class objects. First class objects are
entities that can be passed to a function as an argument, bound to a variable or returned from a function. In
ML, modules are not first class objects, whereas in Java, modules can be treated as first class objects using
the reflection mechanism. While first-class treatment of modules increases the flexibility of a language, it
usually requires some extra overhead at run-time.

3 Module Syntax and Translation to uML

We now extend uML, our simple ML-like language, to support modules. We call the new language uML+M
to denote that it supports modules. There must be some values that we can use as names with an equality
test. The syntax of the new language is:

e ::= . . .
| module (x1 = e1, . . . , xn = en) (module definition)
| em.e (selector expression)
| with em e (bringing into scope)
| lookup− error (error)

We now want to define a translation from uML+M to uML.1 To do this, we notice that a module is
really just an environment, since it is a mapping from names to values. Here is a translation of the module
definition:

[[module (x1 = e1, x2 = e2, . . . , xn = en)]] ρ
4
=

λx. if x = x1 then [[e1]] ρ else
if x = x2 then [[e2]] ρ else
. . .

if x = xn then [[en]] ρ else
lookup-error

The above is one possible translation. Note that ρ is passed as the environment to the translation of
e1, . . . , en. This has an important consequence: variables defined within the module are not visible within the
initialization expression of other variables in the module. For instance, in the above translation, we cannot
refer to any of the xi’s within any of the ei’s. Nor does it seem possible to use the resulting environment
within itself for the purpose of accessing the module variables, since this leads to circularity problems.

However, we could translate module using techniques from the translation of letrec. The environment
that results after the translation should be the same that is used within the module. This can be found by
taking the fixpoint of the function

λρ′. λx. if x = x1 then [[e1]] ρ′ else
if x = x2 then [[e2]] ρ′ else
. . .

if x = xn then [[en]] ρ′ else
lookup-error

1Actually our translation is to the target language uML+S+lookup-error, a simple extension to uML that contains equality
operators for strings and an extra token called lookup-error, which is returned when a variable name is not found in a module.

2

This works fine if the ei’s are functions. However, it is not clear how to handle variables whose initialization
expressions reference one another. For instance, consider

module (x1 = x2, x2 = x1)

Java and C++ avoid this problem by allowing functions within a class to call any other function within the
class, but initialization expressions of variables are only allowed to refer to variables declared earlier in the
class. For our purposes, we stay with the translation above.

The remainder of the translation is as follows:

[[em.e]] ρ
4
= ([[em]] ρ) ([[e]] ρ)

[[with em e]] ρ
4
= [[e]] (MERGE ρ ([[em]] ρ))

MERGE ρ ρ′
4
= λx. let y = ρ′ x in if y = lookup-error then ρ x else y

In the translation of [[em.e]], presumably [[e]] ρ would evaluate to a name.
Note that these translations are really functions of environments. That is, the translation above for

[[em.e]] can be written:

[[em.e]] = λρ. ([[em]] ρ) ([[e]] ρ).

4 State

Program state refers to the ability to change the values of program variables over time. The λ-calculus and
the uML language do not have state in the sense that once a variable is bound to a value, it is impossible
to change that value as long as the variable is in scope. Although state is not a necessary feature of
a programming language—for example, the λ-calculus is Turing complete but does not have a notion of
state—it is a common feature of most languages, and most programmers are accustomed to it.

4.1 Reference Cells

We extend uML to include the ability to change the values of variables, and we call the new language uML!.
We use a construct called a reference cell (aka mutable variable, aka pointer variable) that allows the variable
to be rebound to different values over time. The syntax of uML! is as follows:

e ::= . . .
| ref e (create a reference cell with initial value e)
| !e (evaluation or dereference)
| e1 := e2 (assignment or mutation)
| unit (no value)

Informally, the meaning of these new expressions is as follows. Evaluating the expression ref e creates a
new reference cell having the initial value e. The expression !e evaluates to the current value of the reference
cell e. The assignment e1 := e2 assigns the value of e2 to the reference cell e1, and in our semantics returns
the value unit.

Other design choices could have been made. For example, the assignment operator could have returned
the value of e2 so that expressions like e0 := (e1 := e2) would make sense and could be used to assign the
same value to multiple variables.

In this treatment, reference cells are first-class objects. This is more powerful than simple mutable vari-
ables as in C. It is also more dangerous, because it introduces aliasing, as the following example demonstrates:

3

let x = ref 1 in
let y = x in

let z = (x := 2) in
!y

Here y is an alias for x. Dereferencing y gives us the value of x, which in this case has changed from 1
to 2. The expression therefore evaluates to 2. In other words, if you kick x, y jumps!

4.2 Operational Semantics

We now give an operational semantics for reference cell expressions in uML!. To do this, we define a
configuration as a pair 〈e, σ〉, where e is an expression and σ is a function mapping reference cells to values.
Reference cells are denoted generically by `.

e −→
uML

e′

〈e, σ〉 −→
uML!

〈e′, σ〉

〈ref v, σ〉 → 〈`, σ[v/`]〉, ` /∈ dom σ

〈!`, σ〉 → 〈σ(`), σ〉, ` ∈ dom σ

〈` := v, σ〉 → 〈unit, σ[v/`]〉, ` ∈ dom σ

where σ[v/`] is the same function as σ, except that the value on input ` is changed to v. These are eager
evaluation rules, evaluating values from left to right, so the evaluation contexts are given by the grammar:

E ::= [•] | ref E | !E | E := e | ` := E.

4

