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Lecturer: Dexter Kozen

1 Overview

Our goal is to study basic programming language features using the semantic techniques we know:

• small-step operational semantics;

• big-step operational semantics;

• translation.

We will mostly use small-step semantics and translation.

2 Translation

For translation, we map well-formed programs in the original language into items in a meaning space. These
items may be

• programs in an another language (definitional translation);

• mathematical objects (denotational semantics); an example is taking λx : int. x to {(0, 0), (1, 1), . . . }.

Because they define the meaning of a program, these translations are also known as meaning functions
or semantic functions. We usually denote the semantic function under consideration by [[ · ]]. An object e in
the original language is mapped to an object [[e ]] in the meaning space under the semantic function. We may
occasionally add an annotation to distinguish between different semantic functions, as for example [[e ]]cbn or
C[[e ]].

3 Translating CBN λ-Calculus into CBV λ-Calculus

The call-by-name (lazy) λ-calculus was defined with the following reduction rule and evaluation contexts:

(λx. e1) e2 → e1 {e2/x} E ::= [ • ] | E e.

The call-by-value (eager) λ-calculus was similarly defined with

(λx. e) v → e{v/x} E ::= [ • ] | E e | v E.

To translate from the CBN λ-calculus to the CBV λ-calculus, we define the semantic function [[ · ]] by
induction on the syntactic structure:

[[x ]]
4
= x · ID

[[λx. e ]]
4
= λx. [[e ]]

[[e1 e2 ]]
4
= [[e1 ]] (λz. [[e2 ]]), where z /∈ FV([[e2 ]]).

The idea is to wrap the parameters to functions inside λ-abstractions to delay their evaluation, then to
finally pass in a dummy parameter to expand them out.

For an example, recall that we defined:

true
4
= λxy. x

false
4
= λxy. y

if
4
= λxyz. xyz.
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The problem with this construction in the CBV λ-calculus is that if b e1 e2 evaluates both e1 and e2,
regardless of the truth value of b. Perhaps the conversion above can be used to fix these to evaluate them
lazily.

[[true ]] = [[λxy. x ]]
= λxy. [[x ]]
= λxy. x ID

[[false ]] = λxy. y ID
[[ if ]] = [[λxyz. xyz ]]

= λxyz. [[(xy)z ]]
= λxyz. [[xy ]] (λd. [[z ]])
= λxyz. [[x ]] (λd. [[y ]]) (λd. [[z ]])
= λxyz. (x ID) (λd. y ID) (λd. z ID).

This is not a complete solution, as the conversion does not work for all expressions, but only fully converted
ones. But if used as intended, it has the desired effect. For example, evaluating under the CBV rules,

[[ if true e1 e2 ]] = [[ if ]] (λd. [[true ]]) (λd. [[e1 ]]) (λd. [[e2 ]])
= (λxyz. (x ID) (λd. y ID) (λd. z ID)) (λd. [[true ]]) (λd. [[e1 ]]) (λd. [[e2 ]])
→ ((λd. [[true ]]) ID) (λd. (λd. [[e1 ]]) ID) (λd. (λd. [[e2 ]]) ID)
→ [[true ]] (λd. [[e1 ]]) (λd. [[e2 ]])
= (λxy. x ID) (λd. [[e1 ]]) (λd. [[e2 ]])
→ (λd. [[e1 ]]) ID
→ [[e1 ]],

and e2 was never evaluated.

4 Adequacy

Both the CBV and CBN λ-calculus are deterministic systems in the sense that there is at most one reduction
that can be performed on any term. When an expression e in a language is evaluated in a deterministic
system, one of three things can happen:

1. The computation can converge to a value: e ⇓ v.

2. The computation can converge to a non-value. When this happens, we say the computation is stuck.

3. The computation can diverge: e ⇑.

A semantic translation is adequate if these three behaviors in the source system are accurately reflected
in the target system, and vice versa. One aspect of this relationship is captured in the following diagram:

[[e ]]

e

v′

v

[[v ]]
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If an expression e converges to a value v in zero or more steps in the source language, then [[e ]] must
converge to some value v′ that is equivalent (e.g. β-equivalent) to [[v ]], and vice-versa. This is formally
stated as two properties, soundness and completeness. For our CBN-to-CBV translation, these properties
take the following form:
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4.1 Soundness

[[e ]] ∗−→
cbv

v′ ⇒ ∃v e
∗−→

cbn
v ∧ v′ ≈ [[v ]]

In other words, any computation in the CBV domain starting from the image [[e ]] of a CBN program e must
accurately reflect the computation in the CBN domain.

4.2 Completeness

e
∗−→

cbn
v ⇒ ∃v′ [[e ]] ∗−→

cbv
v′ ∧ v′ ≈ [[v ]]

In other words, any computation in the CBN domain starting from e must be accurately reflected by the
computation in the CBV domain starting from the image [[e ]].

4.3 Nontermination

It must also be the case that the source and target agree on nonterminating executions. We write e ⇑ and
say that e diverges if there exists an infinite sequence of expressions e1, e2, . . . such that e → e1 → e2 → . . . .
The additional condition for adequacy is

e ⇑cbn ⇔ [[e ]] ⇑cbv .

The direction⇐ of this implication can be considered part of the requirement for soundness, and the direction
⇒ can be considered part of the requirement for completeness. Adequacy is the combination of soundness
and completeness.

5 Untyped ML (uML)

Let’s construct an example by augmenting the λ-calculus with some more conventional programming con-
structs and defining its translation to the CBV λ-calculus. We call this language uML since it resembles
ML, with the “u” standing for “untyped”.

5.1 Expressions

e ::= λx1 . . . xn. e | e0 · · · en | x | n | true | false

| (e1, . . . , en) | #n e | if e0 then e1 else e2

| let x = e1 in e2

| letrec f1 = λx1. e1 and . . . and fn = λxn. en in e

5.2 Values

v ::= λx1 . . . xn. e | n | true | false | (v1, . . . , vn)

5.3 Evaluation Contexts

E ::= [ • ] | v0 · · · vm E em+2 · · · en | #n E

| if E then e1 else e2

| let x = E in e

| (v1, . . . , vm, E, em+2, . . . , en)
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5.4 Reductions

(λx1 . . . xn. e) v1 · · · vn → e{v1/x1}{v2/x2} · · · {vn/xn}
#n (v1, . . . , vm) → vn, where 1 ≤ n ≤ m

if true then e1 else e2 → e1

if false then e1 else e2 → e2

let x = v in e → e{v/x}
letrec . . . → to be continued

We can already see that types will be important for establishing soundness. For example, what happens
with the expression if 3 then 1 else 0? The evaluation is stuck, because there is no reduction rule that
applies to this term.

5.5 Translating uML to the CBV λ-Calculus

We define some of the translation rules:

[[λx1 . . . xn. e ]]
4
= λx1 . . . xn. [[e ]]

[[e0 · · · en ]]
4
= [[e0 ]] [[e1 ]] [[e2 ]] · · · [[en ]]

[[x ]]
4
= x

[[n ]]
4
= λfx. fnx

[[true ]]
4
= λxy. x ID

[[false ]]
4
= λxy. y ID

[[ if e0 then e1 else e2 ]]
4
= [[e0 ]] (λz. [[e1 ]]) (λz. [[e2 ]]).

Revisiting our earlier example if 3 then 1 else 0, we see that the translation to CBV is not sound,
because its image [[ if 3 then 1 else 0]] reduces to a value under the CBV rules—there is no way for a closed
term to get stuck in the CBV or CBN λ-calculus, as we proved last time. However, this value does not
correspond to the stuck non-value if 3 then 1 else 0 in the uML language.

One possible solution to this difficulty is to introduce rules that reduce stuck expressions to a special
error value. This is essentially the same as runtime type checking. Another approach is to rule out offending
programs by constraining the syntax using typing rules.
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