
CS611 Lecture 7 Inductive Definitions and the Knaster–Tarski Theorem 13 September 2006
Lecturer: Dexter Kozen

1 Set Operators

Recall from last time that a rule instance is of the form

X1 X2 . . . Xn

X
, (1)

where X and the Xi are members of some set S. The premises are X1, X2, . . . , Xn and the conclusion is X.
We use such rules to specify an inductively defined subset A ⊆ S; intuitively, the rule (1) says that if you
have X1, . . . , Xn ∈ A, then you must also take X ∈ A.

Formally, given a set of rules and a subset B ⊆ S, define

R(B)
4
= {X | {X1, X2, . . . , Xn} ⊆ B and

X1 X2 . . . Xn

X
is a rule instance}. (2)

Then R is a function mapping subsets of S to subsets of S; that is, R : 2S → 2S , where 2S denotes the
powerset (set of all subsets) of S. An important property of R is that it is monotone: if B ⊆ C, then
R(B) ⊆ R(C).

What set A ⊆ S is defined by the rules? At the very least, we would like A to satisfy the following two
properties:

• A is R-consistent : A ⊆ R(A). We would like this to hold because we would like every element of A to
be included in A only as a result of applying a rule.

• A is R-closed : R(A) ⊆ A. We would like this to hold because we would like every element that the
rules say should be in A to actually be in A.

These two properties together say that A = R(A), or in other words, A should be a fixpoint of R. There are
two natural questions to ask:

• Does R actually have a fixpoint?

• Is the fixpoint unique? If not, which one should we take?

2 Least Fixpoints

In fact, any monotone set operator R always has at least one fixpoint. It may have many. But among all its
fixpoints, it has a unique minimal one with respect to set inclusion ⊆; that is, a fixpoint that is a subset of
all other fixpoints of R. We call this the least fixpoint of R, and we take A to be this set.

The least fixpoint of R can be defined in two different ways, “from below” and “from above”:

A∗
4
=

⋃
{Rn(∅) | n ≥ 0} = R(∅) ∪R(R(∅)) ∪R(R(R(∅))) ∪ · · · (3)

A∗ 4
=

⋂
{B ⊆ S | R(B) ⊆ B}. (4)

The set A∗ is the union of all sets of the form Rn(∅), the sets obtained by applying R some finite number
of times to the empty set. It consists of all elements of S that are in Rn(∅) for some n ≥ 0.

The set A∗ is the intersection of all the R-closed subsets of S. It consists of all elements of S that are in
every R-closed set.

We will show that A∗ = A∗ and that this set is the least fixpoint of R, so we will take A
4
= A∗ = A∗.

1



3 The Knaster–Tarski Theorem

The fact that A∗ = A∗ is a special case of a more general theorem called the Knaster–Tarski theorem. It
states that any monotone set operator R has a unique least fixpoint, and that this fixpoint can be obtained
either “from below” by iteratively applying R to the empty set, or “from above” by taking the intersection
of all R-closed sets.

For general monotone operators R, the “from below” construction may require iteration through transfi-
nite ordinals. However, the operators R defined from rule systems as described above are chain-continuous
(definition below). This is a stronger property than monotonicity. It guarantees that the “from below”
construction converges to a fixpoint after only ω steps, where ω is the first transfinite ordinal.

3.1 Monotone, Continuous, and Finitary Operators

A set operator R : 2S → 2S is said to be

• monotone if B ⊆ C implies R(B) ⊆ R(C);

• chain-continuous if for any chain of sets C,

R(
⋃

C) =
⋃

{R(B) | B ∈ C}

(a chain is a set C of subsets of S that is linearly ordered by the set inclusion relation ⊆; that is, for
all B,C ∈ C, either B ⊆ C or C ⊆ B);

• finitary if for any set C, the value of R(C) is determined by the values of R(B) for finite subsets B ⊆ C
in the following sense:

R(C) =
⋃

{R(B) | B ⊆ C, B finite}.

One can show

1. every rule-based operator of the form (2) is finitary;

2. every finitary operator is chain-continuous (in fact, the converse holds as well);

3. every chain-continuous operator is monotone.

The proofs of 1, 2, and 3 are fairly straightforward and we will leave them as exercises. The converse of 2
requires transfinite induction and is more difficult.

3.2 Proof of the Knaster–Tarski Theorem for Chain-Continuous Operators

Let us prove the Knaster–Tarski theorem in the special case of chain-continuous operators, which will allow
us to avoid introducing transfinite ordinals (not that they are not worth introducing!), and that is all we
need to handle rule-based inductive definitions.

Theorem (Knaster–Tarski) Let R : 2S → 2S be a chain-continuous set operator, and let A∗ and A∗ be
defined as in (3) and (4), respectively. Then A∗ = A∗, and this set is the ⊆-least fixpoint of R.

Proof. The theorem follows from two observations:

(i) For every n and every R-closed set B, Rn(∅) ⊆ B. This can be proved by induction on n. It follows
that A∗ ⊆ A∗.

(ii) A∗ is a fixpoint of R, thus is R-closed. Since A∗ is contained in all R-closed sets, A∗ ⊆ A∗.

2



For (i), let B be an R-closed set. We proceed by induction on n. The basis for n = 0 is ∅ ⊆ B, which is
trivially true. Now suppose Rn(∅) ⊆ B. We have

Rn+1(∅) = R(Rn(∅))
⊆ R(B) by the induction hypothesis and monotonicity
⊆ B since B is R-closed.

We conclude that for all n and all R-closed sets B, Rn(∅) ⊆ B, therefore

A∗ =
⋃

{Rn(∅) | n ≥ 0} ⊆
⋂

{B ⊆ S | R(B) ⊆ B} = A∗.

For (ii), we want to show that R(A∗) = A∗. It can be proved by induction on n that the sets Rn(∅)
form a chain:

∅ ⊆ R(∅) ⊆ R2(∅) ⊆ R3(∅) ⊆ · · ·

We have ∅ ⊆ R(∅) trivially, and by monotonicity, if Rn(∅) ⊆ Rn+1(∅), then

Rn+1(∅) = R(Rn(∅)) ⊆ R(Rn+1(∅)) = Rn+2(∅).

Now by chain-continuity,

R(A∗) = R(
⋃
n≥0

Rn(∅)) =
⋃
n≥0

R(Rn(∅)) =
⋃
n≥0

Rn+1(∅) = A∗.

4 Rule Induction

Let us use our newfound wisdom on well-founded induction and least fixpoints of monotone maps to prove
some properties of the reduction rules.

Theorem If e → e′ under the CBV reduction rules, then FV(e′) ⊆ FV(e). In other words, CBV reductions
cannot introduce any new free variables.

Proof. By induction on the CBV derivation of e → e′. There is one case for each CBV rule, corresponding
to each way e → e′ could be derived.

Case 1 :
e1 → e′1

e1 e2 → e′1 e2
.

We assume that the desired property is true of the premise—this is the induction hypothesis—and we wish to
prove under this assumption that it is true for the conclusion. Thus we are assuming that FV(e′1) ⊆ FV(e1)
and wish to prove that FV(e′1 e2) ⊆ FV(e1 e2).

FV(e′1 e2) = FV(e′1) ∪ FV(e2) by the definition of FV

⊆ FV(e1) ∪ FV(e2) by the induction hypothesis
= FV(e1 e2) again by the definition of FV.

Case 2 :
e2 → e′2

v e2 → v e′2
.

This case is similar to Case 1, where now e2 → e′2 is used in the induction hypothesis.

Case 3 :
(λx. e)v → e{v/x}

.

3



There is no induction hypothesis for this case, since there is no premise in the rule; thus this case constitutes
the basis of our induction. We wish to show, independently of any inductive assumption, that FV(e{v/x}) ⊆
FV((λx. e)v).

This case requires a lemma, stated below, to show that FV(e{v/x}) ⊆ (FV(e)−{x})∪FV(v). Once that
is shown, we have

FV(e{v/x}) ⊆ (FV(e)− {x}) ∪ FV(v) by the lemma to be proved
= FV(λx. e) ∪ FV(v) by the definition of FV

= FV((λx. e)v) again by the definition of FV.

We have now considered all three rules of derivation for the CBV λ-calculus, so the theorem is proved.

Lemma FV(e{v/x}) ⊆ (FV(e)− {x}) ∪ FV(v) (this lemma is used by case 3 in the above theorem).

Proof. By structural induction on e. There is one case for each clause in the definition of the substitution
operator. We have assumed previously that values are closed terms, so FV(v) = ∅ for any value v; but
actually we do not need this for the proof, and we do not assume it.

Case 1 : e = x.

FV(e{v/x}) = FV(x{v/x})
= FV(v) by the definition of the substitution operator
= ({x} − {x}) ∪ FV(v)
= (FV(x)− {x}) ∪ FV(v) by the definition of FV

= (FV(e)− {x}) ∪ FV(v).

Case 2 : e = y, y 6= x.

FV(e{v/x}) = FV(y{v/x})
= FV(y) by the definition of the substitution operator
= {y} by the definition of FV

⊆ ({y} − {x}) ∪ FV(v)
= (FV(y)− {x}) ∪ FV(v) again by the definition of FV

= (FV(e)− {x}) ∪ FV(v).

Case 3 : e = e1 e2.

FV(e{v/x}) = FV((e1 e2){v/x})
= FV(e1 {v/x} e2 {v/x}) by the definition of the substitution operator
⊆ (FV(e1)− {x}) ∪ FV(v) ∪ (FV(e2)− {x}) ∪ FV(v) by the induction hypothesis
= ((FV(e1) ∪ FV(e2))− {x}) ∪ FV(v)
= (FV(e1 e2)− {x}) ∪ FV(v) again by the definition of FV

= (FV(e)− {x}) ∪ FV(v).

Case 4 : e = λx. e′.

FV(e{v/x}) = FV((λx. e′){v/x})
= FV(λx. e′) by the definition of the substitution operator
= FV(λx. e′)− {x} because x 6∈ FV(λx. e′)
⊆ (FV(e)− {x}) ∪ FV(v).

4



Case 5 : e = λy. e′, y 6= x. This is the most interesting case, because it involves a change of bound variable.
Using the fact FV(v) = ∅ for values v would give a slightly simpler proof. Let v be a value and z a variable
such that z 6= x, z 6∈ FV(e′), and z 6∈ FV(v).

FV(e{v/x}) = FV((λy. e′){v/x})
= FV(λz. e′ {z/y}{v/x}) by the definition of the substitution operator
= FV(e′ {z/y}{v/x})− {z} by the definition of FV

= ((((FV(e′)− {y}) ∪ FV(z))− {x}) ∪ FV(v))− {z} by the induction hypothesis twice
= (((FV(λy. e′) ∪ {z})− {x}) ∪ FV(v))− {z} by the definition of FV

= ((FV(λy. e′)− {x}) ∪ FV(v) ∪ {z})− {z}
= (FV(e)− {x}) ∪ FV(v).

There is a subtle point that arises in case 5. We said at the beginning of the proof that we would be
doing structural induction on e; that is, induction on the well-founded subterm relation <. This was a lie.
Because of the change of bound variable necessary in case 5, we are actually doing induction on the relation
of subterm modulo α-equivalence:

e <α e′
4
= ∃e′′ e′′ < e′ ∧ e =α e′′.

But a moment’s thought reveals that this relation is still well-founded, since α-reduction does not change
the size or shape of the term, so we are ok.

5 Remark

These proofs may seem rather tedious, and one may wonder why we are doing them in such detail. But
of course, this is exactly the point. Formal reasoning about the semantics of the λ-calculus, including such
seemingly complicated notions as reductions and substitutions, can be reduced to the mindless application
of a few simple rules. There is no hand-waving or magic involved. There is nothing hidden, it is all right
there in front of you. To the extent that we can do this for real programming languages, we will be better
able to understand what is going on.

5


