
CS611 Lecture 6 Well Founded Induction 11 September 2006
Lecturer: Dexter Kozen

1 Summary

In this lecture we will

• define induction on a well-founded relation;

• illustrate the definition with some examples, including the inductive definition of free variables FV (e);

• take another look at inference rules.

2 Introduction

Recall that some of the substitution rules mentioned the function FV : {λ-terms} → Var.

(λy.e0){e1/x} = λy.e0{e1/x}, where y 6= x and y /∈ FV (e1),
(λy.e0){e1/x} = λz.e0{z/y}{e1/x}, where z 6= x, z /∈ FV (e0), and z /∈ FV (e1).

Let’s examine the definition of the free variable function FV.

FV(x) = {x}
FV(e1 e2) = FV(e1) ∪ FV(e2)
FV(λx. e) = FV(e)− {x}.

Why does this definition uniquely determine the function FV? There are two issues here:

• Existence: whether FV is defined on all λ-terms;

• Uniqueness: whether the definition is unique.

Of relevance here is the fact that there are three clauses in the definition of FV corresponding to the three
clauses in the definition of λ-terms and that a λ-term can be formed in one and only one way by one of these
three clauses. Note also that although the symbol FV occurs on the right-hand side in two of these three
clauses, they are applied to proper (proper = strictly smaller) subterms.

The idea underlying this definition is called structural induction. This is an instance of a general induction
principle called induction on a well-founded relation.

3 Well-Founded Relations

A binary relation ≺ is said to be well-founded if it has no infinite descending chains. An infinite descending
chain is an infinite sequence of elements a0, a1, a2, . . . such that ai+1 ≺ ai for all i ≥ 0. Note that a
well-founded relation cannot be reflexive.

Here are some examples of well-founded relations:

• the successor relation {(m,m + 1) | m ∈ N} on N;

• the less-than relation < on N;

• the element-of relation ∈ on sets. The axiom of foundation (or axiom of regularity) of Zermelo–Fraenkel
(ZF) set theory asserts exactly that ∈ is well-founded. Among other things, this prevents a set from
being a member of itself;

• the proper subset relation ⊂ on the set of finite subsets of N.

1

The following are not well-founded relations:

• the predecessor relation {(m + 1,m) | m ∈ N} on N (0, 1, 2, . . . is an infinite descending chain!);

• the greater-than relation > on N;

• the less-than relation < on Z (0,−1,−2, . . . is an infinite descending chain);

• the less-than relation < on the real interval [0, 1] (1, 1
2 , 1

3 , 1
4 , . . . is an infinite descending chain);

• the proper subset relation ⊂ on subsets of N (N, N−{0}, N−{0, 1}, . . . is an infinite descending chain).

4 Well-Founded Induction

Let ≺ be a well-founded binary relation on a set A. Abstractly, a property is just a map P : A → {true, false},
or equivalently, a subset P ⊆ A (the set of all elements of A for which the property is true).

The principle of well-founded induction on the relation ≺ says that in order to prove that a property P
holds for all elements of A, it suffices to prove that P holds of any a ∈ A whenever P holds for all b ≺ a. In
other words,

∀a ∈ A (∀b ∈ A b ≺ a ⇒ P (b)) ⇒ P (a) ⇒ ∀a ∈ A P (a). (1)

Expressed as a proof rule,
∀a ∈ A (∀b ∈ A b ≺ a ⇒ P (b)) ⇒ P (a)

∀a ∈ A P (a)
. (2)

The basis of the induction is the case when a has no ≺-predecessors; in that case, the statement ∀b ∈ A b ≺
a ⇒ P (b) is vacuously true.

For the well-founded relation {(m,m + 1) | m ∈ N}, (1) and (2) reduce to the familiar notion of math-
ematical induction on N: to prove ∀n P (n), it suffices to prove that P (0) and that P (n + 1) whenever
P (n).

For the well-founded relation < on N, (1) and (2) reduce to strong induction on N: to prove ∀n P (n),
it suffices to prove that P (n) whenever P (0), P (1), . . . , P (n − 1). When n = 0, the induction hypothesis is
vacuously true.

4.1 Equivalence of Well-Foundedness and the Validity of Induction

In fact, one can show that the induction principle (1)–(2) is valid for a binary relation ≺ on A if and only if
≺ is well-founded.

To show that well-foundedness implies the validity of the induction principle, suppose the induction
principle is not valid. Then there exists a property P for which the premise of (2) holds but not the
conclusion. Thus P is false for some element a0 ∈ A. The premise of (2) is equivalent to

∀a ∈ A ¬P (a) ⇒ ∃b ∈ A b ≺ a ∧ ¬P (b);

this implies that there exists an a1 ≺ a0 such that P is false for a1. Continuing in this fashion, using the
axiom of choice one can construct an infinite descending chain a0, a1, a2, . . . for which P is false, so ≺ is not
well-founded.

Conversely, suppose that there is an infinite descending chain a0, a1, a2, Then the property “a /∈
{a0, a1, a2, . . .}” violates (2), since the premise of (2) holds but not the conclusion.

5 Structural Induction

Now let’s define a well-founded relation on the set of all λ-terms. Define e < e′ if e is a proper subterm
of e′. A λ-term e is a proper (or strict) subterm of e′ if it is a subterm of e′ and if e 6= e′. If we think of

2

λ-terms as syntax trees, then e′ is a tree that has e as a subtree. Since these trees are finite, the relation is
well-founded. Induction on this relation is called structural induction.

We can now show that FV(e) exists and is uniquely defined for any λ-term e. In the grammar for λ-terms,
for any e, exactly one case in the definition of FV applies to e, and all references in the definition of FV are
to subterms, which are strictly smaller. The function FV exists and is uniquely defined for the base case of
the smallest λ-terms x ∈ Var. So FV(e) exists and is uniquely defined for any λ-term e by induction on the
well-founded subexpression relation.

We often have a set of expressions in a language built from a set of constructors starting from a set of
generators. For example, in the case of λ-terms, the generators are the variables x ∈ Var and the constructors
are the application operator · and the abstraction operators λx. The set of expressions defined by the
generators and constructors is the smallest set containing the generators and closed under the constructors.

If a function is defined on expressions in such a way that

• there is one clause in the definition for every generator or constructor pattern,

• the right-hand sides refer to the value of the function only on proper subexpressions,

then the function is well-defined and unique.

6 Inference rules

We defined small-step and big-step semantics using inference rules. These rules are another kind of inductive
definition. To prove properties of them, we would like to use well-founded induction.

To do this, we can change our view and look at reduction as a binary relation. To say that 〈c, σ〉 −→ 〈c′, σ′〉
according to the small-step SOS rules just means that (〈c, σ〉, 〈c′, σ′〉) is a member of some reduction relation,
which is a subset of (Com× Σ)× (Com× Σ). In fact, not only is it a relation, it is a partial function.

Here is an example of the kind of the rule we have been looking at so far.

a1 −→ a′1
a1 + a2 −→ a′1 + a2

(|a1| > 0)
(3)

Here a1, a2, and a′1 are metavariables. Everything above the line is part of the premise, and everything below
the line is the conclusion. The expression on the right side is a side condition.

A rule instance is a substitution for all the metavariables such that the side condition is satisfied. For
example, here is an instance of the above rule:

3 ∗ 4 −→ 12
(3 ∗ 4 + 1) −→ (12 + 1)

(|3 ∗ 4| > 0)

where the substitutions are a1 = 3 ∗ 4, a′1 = 12, a2 = 1.
Another valid instance of the rule is

3 ∗ 4 −→ 11
(3 ∗ 4 + 1) −→ (11 + 1)

(|3 ∗ 4| > 0)

where the substitutions are a1 = 3 ∗ 4, a′1 = 11, a2 = 1.
With rules like (3), we are usually trying to define some set or relation. For example, this rule might

be part of the definition of some reduction relation −→ that is a subset of AExp × AExp. Such rules are
typically of the form

X1 X2 . . . Xn

X
(φ)

(4)

where X1, X2, . . . , Xn represent elements that are already members of the set or relation being defined, X
represents a new member of the relation added by this rule, and φ is a collection of side conditions that must
hold in order for the rule to be applied.

The difference between a premise and a side condition is that the side condition is not part of the relation
that the rule is trying to define, while the premises are. The side condition is some restriction that determines
when an instance of the rule may be applied.

3

Now suppose we have written down a set of rules in an attempt to define a set A. How do we know
whether A is well-defined? Certainly we would like to have X ∈ A whenever X1, X2, . . . , Xn ∈ A and

X1X2 . . . Xn

X

is a rule instance, but this is hardly a definition of A. What do we put in A to start with?
One approach is to find a well-founded relation such that the rules constitute an inductively defined

function, as described above. Define a rule operator R on sets as follows. Given a set B, let

R(B)
4
= {X | {X1, X2, . . . , Xn} ⊆ B and

X1 X2 . . . Xn

X
is a rule instance}

Then

• R(B) is the set of members of A that can be inferred from the members of set B;

• R(∅) is the set of members that can be inferred from nothing;

• R(R(∅)) is the set of members that can be inferred from R(∅); the elements of R(∅) are in this set
because they are inferred from the empty set, which is a subset of R(∅).

Next time we will use the operator R to define A precisely.

4

