CS611 Lecture 5 IMP: Big-Step and Small-Step Semantics 8 September 2006

Lecturer: Dexter Kozen

1 The IMP Language

Today we present a very simple imperative language, IMP, along with small-step and big-step rules for
evaluation. We will give

e the IMP language syntax;
e a small-step semantics for IMP;
e a big-step semantics for IMP;

e some notes on why both can be useful.

1.1 Syntax

There are three types of statements in IMP:
e arithmetic expressions AExp (elements are denoted a, ag, a1, ...)
e Boolean expressions BExp (elements are denoted b, b, b1, . . .)

e commands Com (elements are denoted ¢, cg, c1, .. .)

A program in the IMP language is a command in Com.

Let Var be a countable set of variables. Elements of Var are denoted x, xg, z1 ... . Let n,ng,ny,... denote
integers (elements of Z = {...,—2,-1,0,1,2,...}). Let @ be an integer constant symbol representing the
number n. The BNF grammar for IMP is

AExp == 7n | = | (ap @ a1)

BExp := true | false | (ag © a1) | (bo @ b1) | (=)

Com == skip | z:=a | (¢o; c1) | (if b then ¢, else ¢2) | (while b do ¢)
© = 4+ | x| -
© = < | =
@ == V| A

1.2 Stores and Configurations

A store (also known as a state) is a function Var — Z that assigns an integer to each variable. The set of
all stores is denoted .

A configuration is a pair (c,o), where ¢ € Com is a command and o is a store. Intuitively, the config-
uration (¢, o) represents an instantaneous snapshot of reality during a computation, in which o represents
the current values of the variables and ¢ represents the next command to be executed.

2 Structural Operational Semantics (SOS): Small-Step Semantics

Small-step semantics specifies the operation of a program one step at a time. There is a set of rules
that we continue to apply to configurations until reaching a final configuration (skip,o) (if ever). We
write (¢,0) — (¢/,0’) to indicate that the configuration (c, o) reduces to (¢’,¢’) in one step, and we write
(c,0) = (¢,0') to indicate that {(c,o) reduces to (¢,¢’) in zero or more steps. Thus (c,0) — (¢,0’) iff



there is a k > 0 and configurations (cg, 00), ..., {ck, o) such that {c,0) = {(¢cg,00), {¢',0’) = {ck,0k), and
<Ci;0i> — <Ci+170i+1> for 0 < 1 < k—1.

To be completely proper, we will define auxiliary small-step operators —, and — for arithmetic and
Boolean expressions, respectively, as well as — for commands'. The types of these operators are

— = (ComxX)— (ComxX)
—q : (AEzpx X)) —1Z
—p : (BEzpxX)—2
Here 2 represents the two-element Boolean algebra consisting of the two truth values {true, false} with the

usual Boolean operations A, V,—. Intuitively, (a, o) 5. n if the expression a evaluates to the integer value
n in state o.

2.1 Arithmetic and Boolean Expressions
e Constants: M, o) —an
e Variables: (w,0) =4 o(x)

<a07 U> —a N0 <a17 J> —a N1

e Operations:
(a0 @ ay,0) —4 ng ©ny

The rules for evaluating Boolean expressions and comparison operators are similar.

One subtle point: in the rule for arithmetic operations @, the & appearing in the expression ay @ a;
represents the operation symbol in the IMP language, which is a syntactic object; whereas the @& appearing
in the expression ng @ ni represents the actual operation in Z, which is a semantic object. These are two
different things, just as @ and n are two different things and true and true are two different things. In this
case, at the risk of confusion, we have used the same metanotation & for both of them.

2.2 Commands

Let o[n/x] denote the store that is identical to o except possibly for the value of z, which is n. That is,

dnfaln 2 {70 VR

n, ify=ux.

(a,0) =an

e Assignments: (x :=a,0) — (skip, on/x])
<Co, 0'> — <66’ OJ>

e Sequences: :
(cojc1,0) = (cpser,0”)  (skipser, o) — (c1,0)

(b,0) —p true (b,0) — false

ditionals:
* Conditionals (if b then ¢ else ¢1,0) — (cg,0) (if b then ¢ else ¢1,0) — (¢1,0)

e While statements: (while b do ¢, o) — (if b then (c; while b do ¢) else skip, o)

There is no rule for skip, since (skip, o) is a final configuration.

I'Winskel uses —1 instead of — to emphasize that only a single step is performed.



3 Structural Operational Semantics: Big-Step Semantics

As an alternative to small-step operational semantics, which specifies the operation of the program one step
at a time, we now consider big-step operational semantics, in which we specify the entire transition from
a configuration (an (expression, state) pair) to a final value. This relation is denoted {}. For arithmetic
expressions, the final value is an integer; for Boolean expressions, it is a Boolean truth value true or false;
and for commands, it is a final state. We write

(e,0) § o' (o' is the store of the final configuration (skip, ¢’), starting in configuration {c, o))
(a,0) I n (n is the integer value of arithmetic expression a evaluated in state o)
(b,oy bt (t € {true, false} is the truth value of Boolean expression b evaluated in state o)

The big-step rules for arithmetic and Boolean expressions are the same as the small-step rules. However,
the rules for commands are different:

e Skip: (skip,o) |} o

(a,0) I n
(x :=a,0) | o[n/z]
(co,o) I o' {e1,0") | o”

<Co;01,U>UU”

(b,o) | true {co,0) | o’ (b,o) | false {(c1,0) | o’

e Assignments:

e Sequences:

ditionals:
e Conditionals (if b then ¢y else c¢1,0) |} o/ (if b then ¢ else ¢1,0) || o
While statements: (b,) Y false (b,0) | true (c,0) | o' (while bdo c,o’) | d”
. ile statements: (while b do ¢,0) |} o (while b do ¢,0) || o”

4 Comparison of Big-Step vs. Small-Step SOS
4.1 Small-Step

e Small-step semantics can model more complex features, like programs that run forever and concurrency.

e Although one-step-at-a-time evaluation is useful for proving certain properties, in many cases it is
unnecessary extra work.

4.2 Big-Step
e Big steps in reasoning make it easier to prove things.
e Big-step semantics more closely models an actual recursive interpreter.

e Because evaluation skips over intermediate steps, all programs without final configurations (infinite
loops, errors, stuck configurations) look the same.



