
CS611 Lecture 5 IMP: Big-Step and Small-Step Semantics 8 September 2006
Lecturer: Dexter Kozen

1 The IMP Language

Today we present a very simple imperative language, IMP, along with small-step and big-step rules for
evaluation. We will give

• the IMP language syntax;

• a small-step semantics for IMP;

• a big-step semantics for IMP;

• some notes on why both can be useful.

1.1 Syntax

There are three types of statements in IMP:

• arithmetic expressions AExp (elements are denoted a, a0, a1, . . .)

• Boolean expressions BExp (elements are denoted b, b0, b1, . . .)

• commands Com (elements are denoted c, c0, c1, . . .)

A program in the IMP language is a command in Com.
Let Var be a countable set of variables. Elements of Var are denoted x, x0, x1 Let n, n0, n1, . . . denote

integers (elements of Z = {. . . ,−2,−1, 0, 1, 2, . . .}). Let n be an integer constant symbol representing the
number n. The BNF grammar for IMP is

AExp ::= n | x | (a0 ⊕ a1)
BExp ::= true | false | (a0 � a1) | (b0 � b1) | (¬b)
Com ::= skip | x := a | (c0 ; c1) | (if b then c1 else c2) | (while b do c)
⊕ ::= + | ∗ | −
� ::= ≤ | =
� ::= ∨ | ∧

1.2 Stores and Configurations

A store (also known as a state) is a function V ar → Z that assigns an integer to each variable. The set of
all stores is denoted Σ.

A configuration is a pair 〈c, σ〉, where c ∈ Com is a command and σ is a store. Intuitively, the config-
uration 〈c, σ〉 represents an instantaneous snapshot of reality during a computation, in which σ represents
the current values of the variables and c represents the next command to be executed.

2 Structural Operational Semantics (SOS): Small-Step Semantics

Small-step semantics specifies the operation of a program one step at a time. There is a set of rules
that we continue to apply to configurations until reaching a final configuration 〈skip, σ〉 (if ever). We
write 〈c, σ〉 → 〈c′, σ′〉 to indicate that the configuration 〈c, σ〉 reduces to 〈c′, σ′〉 in one step, and we write
〈c, σ〉 ∗→ 〈c′, σ′〉 to indicate that 〈c, σ〉 reduces to 〈c′, σ′〉 in zero or more steps. Thus 〈c, σ〉 ∗→ 〈c′, σ′〉 iff

1

there is a k ≥ 0 and configurations 〈c0, σ0〉, . . . , 〈ck, σk〉 such that 〈c, σ〉 = 〈c0, σ0〉, 〈c′, σ′〉 = 〈ck, σk〉, and
〈ci, σi〉 → 〈ci+1, σi+1〉 for 0 ≤ i ≤ k − 1.

To be completely proper, we will define auxiliary small-step operators →a and →b for arithmetic and
Boolean expressions, respectively, as well as → for commands1. The types of these operators are

→ : (Com× Σ) → (Com× Σ)
→a : (AExp× Σ) → Z
→b : (BExp× Σ) → 2

Here 2 represents the two-element Boolean algebra consisting of the two truth values {true, false} with the
usual Boolean operations ∧,∨,¬. Intuitively, 〈a, σ〉 ∗→a n if the expression a evaluates to the integer value
n in state σ.

2.1 Arithmetic and Boolean Expressions

• Constants: 〈n, σ〉 →a n

• Variables: 〈x, σ〉 →a σ(x)

• Operations:
〈a0, σ〉 →a n0 〈a1, σ〉 →a n1

〈a0 ⊕ a1, σ〉 →a n0 ⊕ n1

The rules for evaluating Boolean expressions and comparison operators are similar.
One subtle point: in the rule for arithmetic operations ⊕, the ⊕ appearing in the expression a0 ⊕ a1

represents the operation symbol in the IMP language, which is a syntactic object; whereas the ⊕ appearing
in the expression n0 ⊕ n1 represents the actual operation in Z, which is a semantic object. These are two
different things, just as n and n are two different things and true and true are two different things. In this
case, at the risk of confusion, we have used the same metanotation ⊕ for both of them.

2.2 Commands

Let σ[n/x] denote the store that is identical to σ except possibly for the value of x, which is n. That is,

σ[n/x](y)
4
=

{
σ(y), if y 6= x,
n, if y = x.

• Assignments:
〈a, σ〉 →a n

〈x := a, σ〉 → 〈skip, σ[n/x]〉

• Sequences:
〈c0, σ〉 → 〈c′0, σ′〉

〈c0; c1, σ〉 → 〈c′0; c1, σ
′〉 〈skip; c1, σ〉 → 〈c1, σ〉

• Conditionals:
〈b, σ〉 →b true

〈if b then c0 else c1, σ〉 → 〈c0, σ〉
〈b, σ〉 →b false

〈if b then c0 else c1, σ〉 → 〈c1, σ〉

• While statements: 〈while b do c, σ〉 → 〈if b then (c;while b do c) else skip, σ〉

There is no rule for skip, since 〈skip, σ〉 is a final configuration.

1Winskel uses →1 instead of → to emphasize that only a single step is performed.

2

3 Structural Operational Semantics: Big-Step Semantics

As an alternative to small-step operational semantics, which specifies the operation of the program one step
at a time, we now consider big-step operational semantics, in which we specify the entire transition from
a configuration (an 〈expression, state〉 pair) to a final value. This relation is denoted ⇓. For arithmetic
expressions, the final value is an integer; for Boolean expressions, it is a Boolean truth value true or false;
and for commands, it is a final state. We write

〈c, σ〉 ⇓ σ′ (σ′ is the store of the final configuration 〈skip, σ′〉, starting in configuration 〈c, σ〉)
〈a, σ〉 ⇓ n (n is the integer value of arithmetic expression a evaluated in state σ)
〈b, σ〉 ⇓ t (t ∈ {true, false} is the truth value of Boolean expression b evaluated in state σ)

The big-step rules for arithmetic and Boolean expressions are the same as the small-step rules. However,
the rules for commands are different:

• Skip: 〈skip, σ〉 ⇓ σ

• Assignments:
〈a, σ〉 ⇓ n

〈x := a, σ〉 ⇓ σ[n/x]

• Sequences:
〈c0, σ〉 ⇓ σ′ 〈c1, σ

′〉 ⇓ σ′′

〈c0; c1, σ〉 ⇓ σ′′

• Conditionals:
〈b, σ〉 ⇓ true 〈c0, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′
〈b, σ〉 ⇓ false 〈c1, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′

• While statements:
〈b, σ〉 ⇓ false

〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ true 〈c, σ〉 ⇓ σ′ 〈while b do c, σ′〉 ⇓ σ′′

〈while b do c, σ〉 ⇓ σ′′

4 Comparison of Big-Step vs. Small-Step SOS

4.1 Small-Step

• Small-step semantics can model more complex features, like programs that run forever and concurrency.

• Although one-step-at-a-time evaluation is useful for proving certain properties, in many cases it is
unnecessary extra work.

4.2 Big-Step

• Big steps in reasoning make it easier to prove things.

• Big-step semantics more closely models an actual recursive interpreter.

• Because evaluation skips over intermediate steps, all programs without final configurations (infinite
loops, errors, stuck configurations) look the same.

3

