
CS611 Lecture 4 λ Encodings and Recursion 6 September 2006
Lecturer: Dexter Kozen

1 Encoding Booleans, Natural Numbers, and Data Structures

Even though the pure λ-calculus consists only of λ-terms, we can represent and manipulate common data
objects like integers, Boolean values, lists, and trees. All these things can be encoded as λ-terms.

1.1 Encoding Booleans

The Booleans are the easiest to encode, so let us start with them. We would like to define the Boolean
constants TRUE and FALSE and the Boolean operators IF, AND, OR, NOT, etc. so that they behave in
the expected way. There are many reasonable encodings. One good one is to define TRUE and FALSE by:

TRUE
4
= λxy. x

FALSE
4
= λxy. y.

Now we would like to define the conditional test IF. We would like IF to take three arguments b, t, f ,
where b is a Boolean value and t, f are arbitrary λ-terms. The function should return t if b = TRUE and f
if b = FALSE.

IF = λb tf.

{
t, if b = TRUE,
f, if b = FALSE.

Now the reason for defining TRUE and FALSE the way we did becomes clear. Since TRUE t f → t and
FALSE t f → f , all IF has to do is apply its Boolean argument to the other two arguments:

IF
4
= λb tf. b t f

The other Boolean operators can be defined from IF:

AND
4
= λb1 b2. IF b1 b2 FALSE

OR
4
= λb1 b2. IF b1 TRUE b2

NOT
4
= λb1. IF b1 FALSE TRUE

Whereas these operators work correctly when given Boolean values as we have defined them, all bets
are off if they are applied to any other λ-term. There is no guarantee of any kind of reasonable behavior.
Basically, with the untyped λ-calculus, it is garbage in, garbage out.

1.2 Encoding Integers

We will encode natural numbers N using Church numerals. This is the same encoding that Alonzo Church
used, although there are other reasonable encodings. The Church numeral for the number n ∈ N is denoted
n. It is the λ-term λfx. fn x, where fn denotes the n-fold composition of f with itself:

0
4
= λfx. f0 x = λfx. x

1
4
= λfx. f1 x = λfx. f x

2
4
= λfx. f2 x = λfx. f(f x)

3
4
= λfx. f3 x = λfx. f(f(f x))
...

n
4
= λfx. fn x = λfx. f(f(. . . (f︸ ︷︷ ︸

n

x) . . . )
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We can define the successor function s as

s
4
= λnfx. f(n f x).

That is, s on input n returns a function that takes a function f as input, applies n to it to get the n-fold
composition of f with itself, then composes that with one more f to get the (n + 1)-fold composition of f
with itself. Then

s n = (λnfx. f(n f x)) n

→ λfx. f(n f x)
→ λfx. f(fn x)
= λfx. fn+1 x

= n + 1.

We can perform basic arithmetic with Church numerals. For addition, we might define

ADD
4
= λm n f x. m f (n f x).

On input m and n, this function returns

(λm n f x. m f (n f x)) m n → λf x.m f (n f x)
→ λf x. fm (fn x)
= λf x. fm+n x

= m + n.

Here we are composing fm with fn to get fm+n.
Alternatively, recall that Church numerals act on a function to apply that function repeatedly, and

addition can be viewed as repeated application of the successor function, so we could define

ADD
4
= λm n. m s n.

Similarly, multiplication is just iterated addition, and exponentiation is iterated multiplication:

MUL
4
= λm n. m (ADD n) 0 EXP

4
= λm n. m (MUL n) 1.

1.3 Pairing and Projections

Logic and arithmetic are good places to start, but we still are lacking any useful data structures. For
example, consider ordered pairs. It would be nice to have a pairing function PAIR with projections FIRST
and SECOND that obeyed the following equational specifications:

FIRST (PAIR e1 e2) = e1

SECOND (PAIR e1 e2) = e2

PAIR (FIRST p) (SECOND p) = p,

provided p is a pair. We can take a hint from IF. Recall that IF selects one of its two branch options
depending on its Boolean argument. PAIR can do something similar, wrapping its two arguments for later
extraction by some function f :

PAIR
4
= λabf. f a b.

Thus PAIR e1 e2 → λf. f e1 e2. To get e1 back out, we can just apply this to TRUE: (λf. f e1 e2) TRUE→
TRUE e1 e2 → e1, and similarly applying it to FALSE extracts e2. Thus we can define

FIRST
4
= λp. p TRUE SECOND

4
= λp. p FALSE.

Again, if p isn’t a term of the form PAIR a b, expect the unexpected.
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2 Recursion and the Y Combinator

With an encoding for IF, we have some control over the flow of a program. We can also write simple for
loops using the Church numerals n. However, we do not yet have the ability to write an unbounded while
loop or a recursive function.

In ML, we can write the factorial function recursively as

fun fact(n) = if n ≤ 1 then 1 else n*fact(n-1)

But how can we write this in the λ-calculus, where all the functions are anonymous? We must somehow
construct a λ-term FACT that satisfies the equation

FACT = λn. IF (n ≤ 1) 1 (MUL n (FACT (SUB n 1))) (1)

Equivalently, we must construct a fixpoint of the map F defined by

F
4
= λf. λn. IF (n ≤ 1) 1 (MUL n (f (SUB n 1)));

that is, a λ-term FACT such that F (FACT) = FACT. Any solution of (1) will do; different solutions may
disagree on non-integers, but one can show inductively that any solution of (1) will yield n! on input n. Thus
it is only a question of existence.

Now consider the λ-term

(λx. F (x x)) (λx. F (x x)).

This is a fixpoint of F , since

(λx. F (x x)) (λx. F (x x)) → F ((λx. F (x x)) (λx. F (x x))).

Moreover, this construction does not depend on the nature of F , so we can define

Y
4
= λf. (λx. f (x x)) (λx. f (x x)).

Then for any f , we have that Y f is a fixpoint of f ; that is, Y f = f (Y f).
This Y is the infamous Y combinator, a closed λ-term that constructs solutions to recursive equations in

a uniform way.
Curiously, although every λ-term is a fixpoint of the identity map λx. x, the Y combinator produces a

particularly unfortunate one, namely the divergent λ-term Ω introduced in Lecture 2.
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