
CS611 Lecture 1 Introduction 25 August 2006
Lecturer: Dexter Kozen

1 Introduction

What is a program? Is it just something that tells the computer what to do? Yes, but there is much more
to it than that. The basic expressions in a program must be interpreted somehow, and a program’s behavior
depends on how they are interpreted. We must have a good understanding of this interpretation, otherwise
it would be impossible to write programs that do what is intended.

It may seem like a straightforward task to specify what a program is supposed to do when it executes.
After all, basic instructions are pretty simple. But in fact this task is often quite subtle and difficult.
Programming language features often interact in ways that are unexpected or hard to predict. Ideally it
would seem desirable to be able to determine the meaning of a program completely by the program text, but
that is not always true, as you well know if you have ever tried to port a C program from one platform to
another. Even for languages that are nominally platform-independent, meaning is not necessarily determined
by program text. For example, consider the following Java fragment.

class A { static int a = B.b + 1; }
class B { static int b = A.a + 1; }

First of all, is this even legal Java? Yes, although no sane programmer would ever write it. So what
happens when the classes are initialized? A reasonable educated guess might be that the program goes into
an infinite loop trying to initialize A.a and B.b from each other. But no, the initialization terminates with
initial values for A.a and B.b. So what are the initial values? Try it and find out, you may be surprised.
Can you explain what is going on?

This simple bit of pathology illustrates the difficulties that can arise in describing the meaning of pro-
grams. Luckily, for the most part, these are the exception, not the rule.

Programs describe computation, but they are more than just lists of instructions. They are mathemat-
ical objects as well, with properties and behavior that we can attempt to described formally. For most
mathematical structures we encounter, familiar mathematical tools like sets and sequences are adequate to
describe the properties of the structure. In this course we will see some of the formal tools that have been
developed for describing precisely what programs are and what they do.

This course is mostly about the semantics of programs and programming languages. “Semantics” is
a synonym for “meaning” or “interpretation”. We want to be very precise about this notion, because
it is necessary for understanding the behavior of programs. It is essential not only for writing correct
programs, but also for building tools like compilers, optimizers, and interpreters. Understanding the meaning
of programs allows us to ascertain whether these tools are implemented correctly.

There are three major components to this course.

• Dynamic semantics. We will study methods for describing and reasoning about what happens when a
program runs.

• Static semantics. We will also study methods for reasoning about programs before they run. Such
methods include type checking, type inference, and static analysis. We would like to find errors in
programs as early as possible. By doing so, we can often detect errors that would otherwise show up
only at runtime, perhaps after significant damage has already been done.

• Language features. We will apply methods for dynamic and static semantics to study actual language
features of interest, including some interesting features that many students may have not seen before.

At the start, we will mostly be characterizing the semantics of a program as a function that produces
an output value(s) based on some input value(s). More generally, real programs are reactive and interact
with their inputs arriving from the environment. Describing reactive programs is more challenging, although
we can view the reactive behavior of the program again as a function of the inputs it receives from the
environment as it runs. Thus, to describe program semantics, we will build up some mathematical tools for
constructing and reasoning about functions.

1

1.1 Binary Relations and Functions

Denote by A×B the set of all ordered pairs (a, b) with a ∈ A and b ∈ B. A binary relation on A×B is just
a subset R ⊆ A × B. The sets A and B can be the same, but they do not have to be. The set A is called
the domain and B the codomain (or range) of R. The smallest binary relation on A×B is the null relation
∅ consisting of no pairs, and the largest binary relation on A×B is A×B itself. The identity relation on A
is ID = {(a, a) | a ∈ A} ⊆ A×A.

An important operation on binary relations is relational composition

R;S = {(a, c) | ∃b (a, b) ∈ R ∧ (b, c) ∈ S},

where the codomain of R is the same as the domain of S.
A (total) function (or map) is a binary relation f ⊆ A×B in which each element of A is associated with

exactly one element of B. There can be more than one element of A associated with the same element of B.
If f is such a function, we write:

f : A → B

In other words, a function f : A → B is a binary relation f ⊆ A×B such that for each element a ∈ A, there
is exactly one pair (a, b) ∈ f with first component a.

The set A is the domain and B is the codomain or range of f . The image of f is the set of elements in
B that come from at least one element in A under f :

image(f) = {x ∈ B | x = f(a) for some a ∈ A}
= {f(a) | a ∈ A}.

This is also sometimes denoted f(A), although this is an abuse of notation.
A partial function f : A ⇀ B is a function f : A′ → B defined on some subset A′ ⊆ A. The notation

dom(f) refers to A′, the domain of f .
A function f : A → B is said to be one-to-one (or injective) if a 6= b implies f(a) 6= f(b) and onto (or

surjective) if every b ∈ B is f(a) for some a ∈ A.

1.2 Representation of Functions

Mathematically, a function is equal to its extension, which is the set of all its (input, output) pairs. One
way to describe a function is to describe its extension directly, usually by specifying some mathematical
relationship between the inputs and outputs. This is called an extensional representation. Another way is
to give an intensional1 representation, which is essentially a program or evaluation procedure to compute
the output corresponding to a given input. The main differences are

1. there can be more than one intensional representation of the same function, but there is only one
extension;

2. intensional representations typically give a method for computing the output from a given input,
whereas extensional representations need not concern themselves with computation (and often do
not).

This course is quite a bit about how to get from an intensional representation to a corresponding exten-
sional representation.

2 The Lambda Calculus

The lambda calculus (or λ-calculus2, λ=Greek “L”) was introduced by Alonzo Church and Stephen Cole
Kleene in the 1930s to describe functions in an unambiguous and compact manner. The lambda calculus
provides intensional representations of functions.

1Note the spelling: intensional and intentional are not the same!
2Why λ? Church wanted to separate the bound variables from the unbound (free) variables and he used a caret on top of

the bound variables. f(x) = x + yx2 was represented as x̂.x + yx2. Apparently, the printers could not handle the caret and it
moved to the front and became a λ; the expression became λx. x + yx2

2

Real programming languages such as Lisp, Scheme, Haskell and ML are based on the lambda calculus,
although there are differences as well. Lisp was the first of these.

It is common to use lambda notation in conjunction with other operators and values in some domain,
such as λx. x + 2, but the pure λ-calculus has only λ-terms and only the operators of functional abstraction
and functional application, nothing else. In the pure λ-calculus, λ-terms act as functions that take other
λ-terms as input and produce λ-terms as output. Nevertheless, it is possible to code common data structures
such as booleans, integers, lists, and trees as λ-terms. The λ-calculus is computationally powerful enough to
represent and compute any computable function. It is thus equivalent to Turing machines in computational
power.

2.1 Syntax

The following is the syntax of the pure λ-calculus. A λ-term is defined inductively as follows. There is a
countable set of variables Var.

1. Any variable x ∈ Var is a λ-term.

2. If e is a λ-term, then so is λx. e (functional abstraction).

3. If e1 and e2 are λ-terms, then so is e1 · e2 (functional application).

We often write e1 e2 or e1(e2) for e1 · e2. Intuitively, this term represents the result of applying of e1 as a
function to e2 as its input. The term λx. e represents a function with input parameter x and body e.

We can abbreviate the above definition in BNF (Backus–Naur form) as

e ::= x | e1 e2 | λx. e.

In mathematics it is common to define a function f by writing down what its value on a typical input
would be. For example, we might define the squaring function on integers by writing f(x) = x2. This is
the same as writing f = λx. x2. In mathematics, one often writes x 7→ x2 to denote the same function
anonymously, that is, without giving it a separate name; this is the same as writing λx. x2.

Here are some examples of λ-terms. The identity function is ID = λx. x. A function that ignores its
argument and return the identity function is λx. λa. a. This is the same as λx. ID.

Parentheses are used to show explicitly how to parse expressions, but we also assign a precedence to the
operators in order to save parentheses. The application operator · binds tighter than λ-abstraction. Another
way to view this is that the body of a λ-abstraction extends as far to the right as it can. For example,
λx. x λy. y should be parsed as λx. (x λy. y), not (λx. x) (λy. y). If you want the latter, you have to use
explicit parentheses. Application is left-associative, which means that e1 e2 e3 should be parsed as (e1 e2) e3.

It’s never a bad idea to include parentheses if you aren’t sure.

2.2 Scope, Bound and Free Occurrences, Closed Terms

The scope of the abstraction operator λx shown in the term λx. e is the body e. An occurrence of a variable
y in a term is said to be bound in that term if it occurs in the scope of an abstraction operator λy; otherwise,
it is free. A bound occurrence of y is bound to the abstraction operator λy with the smallest scope in which
it occurs. Note that a variable can have bound and free occurrences in the same term, and can have bound
occurrences that are bound to different abstraction operators.

A term is closed if all variables are bound.
In the term

λx. (x (λy. y a) x) (λx. x y),

all three occurrences of x are bound. The first two are bound to the first λx, and the last is bound to the
second λx. The first occurrence of y is bound, the a is free, and the last y is free, since it is not in the scope
of any λy.

3

2.3 Higher-Order Functions

In lambda calculus, we can define functions that can take functions as arguments and return functions as
results. Thus functions are first-class values. For example, the term λf. f 5 represents a function that takes
another function f as an argument and applies it to 5. The term λv. λf. f v represents a function that takes
an argument v and returns a function that calls its argument on v. A function that takes a pair of functions
and returns their composition is represented by λf. λg. λx. g(fx).

In fact, every λ-term represents a function, since any λ-term can appear on the left-hand side of an
application operator.

2.4 Multi-Argument Functions and Currying

We would like to allow multiple arguments to a function, as for example in (λx, y. x + y)(5, 2). However
we can consider this an abbreviation for (λx. λy. x + y) 5 2. That is, instead of the function taking two
arguments and adding them, the function takes only the first argument and returns a function that takes the
second argument and then adds the two arguments. In general, λx1 . . . xn. e is considered an abbreviation
for λx1. λx2. λx3. . . . λxn. e. Thus we consider the multi-argument version of the λ-calculus as just syntactic
sugar. The “desugaring” transformation

λx1 . . . xn. e ⇒ λx1. λx2. λxn. e

e0 (e1, . . . , en) ⇒ e0 e1 e2 · · · en

for this particular form of sugar is called currying (after Haskell B. Curry).

3 Preview

Next time we will discuss capture-avoiding (safe) substitution the computational rules of the λ-calculus,
namely α-, β-, and η-reduction. This is the calculus part of the λ-calculus.

4

