HOARE LOGIC: FROM FIRST-ORDER TO PROPOSITIONAL
FORMALISM *

JERZY TIURYNT

1. Introduction

Hoare Logic, intoduced by C.A.R. Hoare (Hoare, 1969), is a precursor of
Dynamic Logic. It was one of the first formal verification systems designed
for proving partial correctess assertions (PCAs) of deterministic while pro-
grams. It is related to the invariant assertion method of R. Floyd (Floyd,
1967). Both Hoare Logic and Dynamic Logic are examples of what is called
the ezogenous approach to the modal logic of programs. This means that
programs are explicit and are part of well formed expressions, the logic is
dealing with. It should be contrasted with another approach, called endoge-
nous, which is exemplified by Temporal Logic (Pnueli, 1977). In the latter
approach the program is fixed and it is viewed as part of the structure
in which the logic is interpreted. The interested reader is referred to in-
depth surveys on Hoare Logic (Apt, 1981; Apt and Olderog, 1991) and on
Temporal Logic (Emerson, 1990; Gabbay et al., 1994).

It follows from complexity considerations that there is no sound and
complete proof system capable of deriving all valid PCAs. In particular
Hoare Logic is incomplete — in general the intermediate assertions and
loop invariants need not be first-order expressible. As shown by S. Cook
(Cook, 1978) Hoare Logic is relatively complete, i.e. complete over suffi-
ciently expressive structures. The expressiveness conditions can be stated
as first-order definability of weakest liberal preconditions.

Most investigations in Hoare Logic are carried out in the context of
first-order language. However, some properties of the formal system can be
obscured by restricting attention to a very special form of atomic programs
like an assignment statement. A basic question naturally arises: to which
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extend the metamathematical properties of Hoare Logic are a consequence
of choosing assignment statements as the atomic programs? For this reason
one can consider an investigation of Hoare Logic on the propositional level.
Propositional Hoare Logic (PHL) was introduced by D. Kozen (Kozen,
1999). Tt is subsumed by other propositional program logics such as Proposi-
tional Dynamic Logic (PDL) (Fischer and Ladner, 1977), or Kleene Algebra
with Tests (KAT) (Kozen, 1997). The Hoare PCA {b} p {c} is expressed in
PDL by the formula b — [plc and in KAT by the equation bpé = 0. The
weakes liberal precondition of p with respect to ¢ is expressed in PDL by
[plec.

As we will see determinig the deductive strength of the original Hoare
rules in a propositional context sheds some light on the boundary between
Hoare logic proper and the expressiveness assumptions on the underlying
domain. Instead of studying derivability in PHL of a single PCA {b} p {c}
we are concerned with derivability of rules of the form

{01} pifert .- {bn} pn {cn}
{b} p {c} ’

(1)

where p1,...,p, are programs and by,...,b,,c1,...,Cn,b,c are proposi-
tions. The case of derivability of a single PCA is obtained when n = 0
in (1).

In the present exposition we work with programs being regular ex-
pressions, rather than while programs. Working with the former class of
programs does not lead to sacrificing the computational power and it results
in simpler rules of inference.

The aim of this paper is to introduce the student to PHL. The paper is
organized as follows. In Section 2 we introduce some notation including the
class of deterministic while programs and their semantics. We also discuss
briefly the notion of the weakest liberal precondition. Section 3 is devoted to
recalling some basic facts about the first-order Hoare Logic. In particular
we discuss there the issues of incompleteness and relative completeness.
Derivability and admissibility of rules is also briefly discussed here. Then
in Section 4 we introduce Propositional hoare Logic. We show that every
valid rule (1) with atomic programs p1,...,p, in the premises is derivable
in PHL. Examples show that the atomicity assumption in the above result
is essential. We also show that if PHL is suitably extended by introducing
propositional version of weakes liberal preconditions, every valid rule (1)
becomes derivable. Both these results are due to D. Kozen and the author
of the present paper (Kozen and Tiuryn, 2000), We decided to include brief
sketches of the proofs of these results since the publication of (Kozen and
Tiuryn, 2000) is not easily available. Also the details of the presentation
of the second result slightly differ from the original publication. We also
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mention in Section 4 the issue of complexity of deciding validity of rules in
PHL.

2. Preliminaries

Let us fix a signature 3. While programs are build from tests, being
quantifier-free first-order formulas; and assignment statements z := t with
help of the following programming constructs:

—  Composition: a; B.

— Conditional: if ¢ then « else S.

— Iteration: while ¢ do «a.

Given a YX-structure 2. The meaning of a program « in 2 is a binary
input-output relation mg(a) C S% x S*.
def
— my(z:=1) f {(w, ulz/u(®)]) | v e S*}.
my(a; B) = ma(o )Omm(ﬁ)
— myif ¢ then a else §) 2 ma (i) o ma(e) Uma(~p) o ma(B).
def
— my(while ¢ do a) = (my(yp) o my(a))* o my(-p).

2.1. WEAKEST LIBERAL PRECONDITION

The concept of weakest liberal precondition was introduced in 1975 by
E.W. Dijkstra (Dijkstra, 1975). It played an important role in the area of
program semantics. A weakest liberal precondition of a program a w.r.t. a
formula %) in a structure 2 is the following predicate

WLPy(a, ) & {u e S% | Vo (u,v) € my(a) => v € my(¥)}.

This predicate is usually not first-order definable. A structure 2 for which
WLPy(«v, ) is first-order definable for all programs « and formulas 1 is
called expressive.

Weakest liberal precondition for o w.r.t. ¢ is expressed in Dynamic
Logic by the necessity statement [a]p, i.e. we have for every structure 2,

WLPy(c, 9) = ma(lad®).

The basic properties of weakest liberal preconditions are collected in the
following result, whose proof can be safely left for the reader. This result can
be viewed as an equivalent definition of the weakest liberal precondition.

THEOREM 2.1. WLP(—, —) is the least predicate satisfying the following
equivalences.
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1. | WLP(z == t, ¢) <= [z /t].

2. = WLP(if o then « else 8, 1) <= (cAWLP(a, ))V(=oAWLP(8, )).

3. | WLP(a; B, 4) <= WLP(a, WLP(S, 1)).

J. = WLP(while o do «, 9) <= (~oA)V(eAWLP(e, WLP(while o do a, )).

3. First-Order Hoare Logic, HL

A partial correctness assertion is a triple {¢} « {1}, where « is a pro-
gram and ¢, are first-order formulas. It expresses the property that if
the program « is run in a state satisfying the precondition ¢, then upon
termination it will satisfy the postcondition 1. Termination of a is not
guaranteed, though. More formally, for a structure 2,

AE {p} o {y} &5

for all u,v € 8%, if A, u E ¢ and (u,v) € my(a), then A v E .

The next result connects partial correctness assertions with weakest
liberal preconditions. It follows immediately from the definitions.

PROPOSITION 3.1. For all formulas v, and every program «,
F{e} a{y} <= ¢ = WLP(a, ).

A PCA {p}a{y} is valid, denoted = {¢} a{+}, if it holds in all struc-
tures. We cannot hope to have a sound proof system capable of deriving all
valid PCAs. The reason is that the set of all valid PCAs is too complex.

THEOREM 3.2. (Complexity of PCA Validity)
For sufficiently rich signatures %, the set of all valid PCAs is T13-complete.

Since the set of all valid PCAs in a given structure 2 is at least as

complex as the first-order theory of 2l we assume that the latter is is given
as an oracle in the system we are going to introduce.
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(Assignment) {p[z/e]} = :=e{p}
L (ebale (6 81)
(Composition) (o} a: 5 (v}
) {pnotafy}, {on-o}B{d}
{¢} if o then « else 5 {9}
. {pno}afe}
(While) {¢} while o do a {p A —c}
AE ' = o, {ptafy}, A=)
{¢'} a{y'}

(Conditional

(Weakening)

Figure 1. HL, Hoare Logic over a structure 2.

We denote by Fo {¢} a {1} derivability of the PCA {¢} a {4} in HL
over 2.

THEOREM 3.3. (Soundness)
For every X-structure U, if o {p} a{¢}, then AE {p} a{y}.

It follows from Theorem 3.2 that HL is incomplete. The particular
reason for incompleteness of HL is that the intermediate assertion & in
(Composition) rule and the invariant assertion ¢ in (While) rule need
not be first-order definable. To illustrate this let us consider the following
example (due to M. Wand (Wand, 1978)). Let ¥ = {f,r}, where f is a
unary operation symbol and r is a unary relation symbol. Consider the
structure A = (A, %, r¥), where

A={a; |ieN}U{b;|i€eN},
rm:{ak2|kEN},

and f% is defined as follows (z stands here for a, or b)
A\ o if 4 = 0,
fHm) {xil ifi > 0.

Hence f behaves in 2 like predecessor (on two copies on natural num-
bers), and r defines an infinite subset of {a; | i € N} with an increasing
distance between two consequtive elements in this subset.
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Clearly we have 2 E {r(z)} while z # f(z) do z := f(z) {r(z)}, but

THEOREM 3.4. (Wand, 1978)
The PCA

{r(z)} while z # f(z) do z := f(z) {r(z)}

18 not derivable in .

The reason why the PCA of Theorem 3.4 is not derivable is that, as it
is easy to show, derivability of it would imply that the set {a; | i € N} is
first-order definable in 2(. However, this set is not first-order definable in
2. The interested reader should try to prove both these claims.

Let us recall that expressive structures are those for which the weakest
precondition for every while program is first-order definable. The impor-
tant examples of expressive structures are finite structures and the standard
model of arithmetic, the latter is due to the enormous encoding power of
arithmetic.

The following well known result is due to S. Cook (Cook, 1978).

THEOREM 3.5. (Relative Completeness)
Hoare logic is relatively complete, i.e. for every expressive structure A, if

AE{p} a{p}, then o {p} a{y}.

Proof:  We will not give the full proof of this result since it is well docu-
mented in the literature (see, eg. (Winskel, 1993)). One way of proving this
result is to show that if we view the weakest liberal precondition as a first
order formula, then in all structures 2l we have

Fa {WLP(a, ¢)} {9}, (2)

holds for all formulas 1) and programs «. The proof of (2) is by induction
on «a. To conclude the proof of Theorem 3.5 we observe that if 2 is an
expressive structure then (2) is obtainable by a legal derivation (i.e. all pre-
and postconditions are first-order formulas) and if 2 = {¢} a {4} holds,
then by Proposition 3.1 and weakening applied to (2) we conclude that

Fo {p} a {9}
"

Let us now briefly discuss the issue of admissibility vs. derivability of
rules. Given a rule of the form

{oifar {1} ... {on}on{n}
®) o) a9} |
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7

(R) is said to be admissible (in Hoare logic) if adding it to the rules of Hoare
logic does not increase the set of theorems, i.e. for every structure 2 and for
every PCA {¢} a{¢}, this PCA is derivable in HL extended by (R) iff Fy
{¢}a{y}. A stronger notion is that of derivability. (R) is said to derivable in
Hoare logic if the conclusion {p} a {1} can be derived in HL (uniformly for
all structures ) from the premises {1} a1 {¢1} ... {on} an {¢¥n}. Another
important notion is that of validity of a rule. (R) is said to be valid if for
every structure 2, if all premises of (R) are valid in 2(, then the conclusion
is valid in 2 as well.

Here is an example of an admissible rule. It will play an important role
in the next Section.

PROPOSITION 3.6. The following rule

n r {(pl}a{lp]} 'L:].,,m,]:].,,’n
(And/Or) Vo o TN )

is admissible in Hoare logic.

Proof.:  The proof is by induction on «. We show that when the premises
are derivable in HL, then the conclusion is derivable as well. When « is an
assignment statement x := ¢, then we first observe that

Fa{et 2=t {y} <= Ao = Plz/t]. (3)

We leave the proof of (3) for the reader. It follows from (3) that if {¢; }a{v;}
is derivable, then A = ¢; = 9;[z/t], foralli =1,...,mand j =1,...,n.
Thus

m n

A= Vi = A\ djlo/]
i=1 j=1

and again by (3) we obtain the conclusion.

The case a being a conditional is immediate. If « is a composition 3 ; v
and if §; ; is the intermediate assertion for Fo {¢i} 85 v {;}, then A; ; & ;
is the intermediate assertion for o {ViZ; i} B85 v {Aj=1 ¥;}-

Finally let us consider the case of a being the iteration while o do £.
Assume that Fo {¢;} o {¢;}. Hence there is an invariant & ; such that

i = &i (4)
§ij N o — 1) (5)
and
Fa {&j Ao} B{&,;}-
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Let def
€ ..
¢\ N\ &
(]
By the induction hypothesis we have
Fa {o A\ &t BN Gt
] ]
Since \V; \; &ij = Vij&igand A; ;& = Vi A\ & > by weakening we obtain
Fa {o A &Y B{EH
Thus Fy {{} while o0 do S{{A—-0c}. By (4) V; ;i — £ and by (5) EA—0 —
A\; ;. Hence, by weakening we obtain Fo {ViZ) i} a {Aj_; ¥;}.
Consider now the following rule
{¢} while ¢ do « {9}
{o Aot a{-o— ¢}

How can we argue that the above rule is valid? One way is to show the
validity of (6) directly from the semantics of the while construct. But we
can also show it by refering to the properties of weakest liberal precondition
listed in Theorem 2.1. We illustrate the latter method since it will be used
in the next section. We will be little informal with our argument. Let us
view the weakest liberal preconditions as first-order formulas. Let 2 be any
structure such that

(6)

A = {¢} while 0 do a {¢}. (7)

Claim (2) in the proof of Theorem 3.5 states that Fo { WLP(av, &)} a{¢}
holds for all programs a and all formulas £. Let us choose for ¢ the formula
WLP(while o do «, ). Thus we have

Fo { WLP(a, WLP(while o do «, 9))}a{ WLP(while ¢ do «a, ¥)}. (8)
It follows from Theorem 2.1(4) that
2 = WLP(while o do «, ¢) — (-0 — 1) 9)

and

2 = WLP(while o do «, ¢) Ao —

WLP(«, WLP(while o do «, 1)) (10)

It follows from Proposition 3.1 applied to (7) that
2 = ¢ - WLP(while o do «, 7).
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Thus by (9), (10) and weakening applied to (8) we obtain o {pAc}a{-0c —
1 }. Hence

AE={pNo}a{-o— P}

4. Propositional Hoare Logic, PHL

In the propositional level of reasoning we start with two sorts of atoms:
atomic programs and atomic propositions. Propositions are constructed from
atomic propositions, and 0 (falsehood) with help of implication —. We de-
note the negation b — 0 by b. The truth value 1 is defined as 0. Disjunction
and conjunction are defined in terms of — and 0 in the usual way. If C' is a
finite set of propositions, then \/ C denotes the disjunction of its elements.
In particular we set \/ ) = 0. Similarly, A C' denotes the conjunction of the
elements of C' and we take A\ () = 1.

As in Propositional Dynamic Logic (see (Harel et al., 2000)), instead of
a more traditional conditional and while constructs we base our programs
on two more fundamental programming constructs: iteration * (a reflexive
and transitive closure) and a binary nondeterministic choice + (binary set
union). Programs is the smallest class of expressions satisfying:

— Every atomic program and every proposition is a program.
— 1If p,q are programs then the following expressions are programs as
well.

*p;q

*p+gq

[ ] p*
We add parenthesis when necessary. Because of the propositional level
of reasoning we cannot talk about assignment statements — the atomic
programs play the role of assignment statements, but we are not restricted
to think of an atomic program as an assignment statement. The symbol
- is overloaded in our approach: it denotes composition of programs or
conjunction of formulas, depending on the context.

We interpret propositions and programs in Kripke frames. A Kripke
frame R consists of a set of states K and a map mg associating a subset of K
with each atomic proposition and a binary relation on K with each atomic
program. The map mg is extended inductively to compound programs and
propositions according to standard rules (see (Harel et al., 2000)). For the
sake of completeness of exposition we present it below. For propositions we
have the following equations.

— mg(0) = 0.
— mgb—=c)={se€ K|sgmg(b) or s € mg(c)}.
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10

We overload the operator mg in the sense that the binary relation assigned
to a proposition viewed as a program is a partial identity, rather than a set
of states, as it is the case when the proposition is viewed in the usual way
(i.e. as a proposition). It will be always clear from the context in which
sense a given proposition is used in an expression.

— mg(d) = {(s,5) € K x K | s € mg(b)}.

— mg(p; q) = mga(p) o mga(q).
- mﬁ(p + q) = mga(p) Umg(q)-
- mﬁ( ) = n>0(mﬂ(p))n-

We write R, s E b for s € mg(b) and s L‘;) t for (s,t) € mg(p).

It follows from the above semantics of programs that conditional and
while constructs are definable in our formalism:
if b then p else ¢ def bp + bq (11)
and
def %7
while bdo p = (bp)"b. (12)

The PCA {b} p {c} says intuitively that if b holds before executing p,
then ¢ must hold after. Formally, the meaning in PHL is the same as the
meaning of b — [plc in PDL: in a state s of a Kripke frame {,

RsEBYplc &L (R,sFb = Wt (s%t — R, tF ).

For ¢ a PCA and ® a set of PCAs, we write

ﬁlZ(p(ngeﬁ R,sEp
RED & vpecd REyp

DEp &L va RED = AF o

Consider the general form of a rule of inference.

{bi}pi{c},.. , {bn} Pn{cn}
(R) 7 ()

The rule (R) is said to be valid if {{b1}p1{c1},...,{bn}pn{cn}} E {b}p{c}.
Call a PCA {b} p {c} atomic if p is an atomic program. The rule (R) is
said to be atomic if all its premises are atomic.

We can rewrite the traditional Hoare rules in the propositional level —
they would look exactly the same as in Figure 1, except that the assignment

(13)
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11

rule would be missing. The pre- and postconditons, as well as tests in the
propositional level are propositions. Then the conditional and while rules
are replaced by simpler rules, as can be seen in Figure 2. We also need the
and/or rule in PHL for reasons which will become clear a bit later.

(Test) {b} c{bc}
" {by p{c}, {c}q{d}
(Composition) Ol p: a {4}
. {by p{c}, {b}q{c}
(Choice) Ol pralc)
by p b}
{0} p* {0}
v —=b, {btp{c}, c—¢
{v'}p{c}
{b}p{c} beB, celC
{VB}p{AC}

(Iteration)

(Weakening)

(And/Or)

Figure 2. PHL, Propositional Hoare Logic. p, q are programs, b, c are propositions, B, C'
are finite sets of propositions.

It is immediate to show that all the rules of PHL are valid. Let us observe
that without (And/Or) rule no atomic PCA is derivable. However, with
the help of this rule we can derive a few atomic PCAs: taking B = {b} and
C = we get - {b} p {1}; on the other hand, taking B = () and C = {c}
we get = {0} p {c}. Thus (And/Or) rule is not admissible in PHL.

Even with the (And/Or) rule very few PCAs are derivable. The reason
is that no specific axioms are assumed for atomic PCAs. Thus we investigate
derivability of valid atomic rules. Let us recall that derivability in PHL of
the rule (R) means that the conclusion {b} p {c} is derivable in PHL from
the additional PCAs {b1} p1 {c1},...,{bn} pn {cn} treated as extra axioms.
For example, translation of the conditional rule under the definition (11)

becomes
{bc} p{d} {bc} q{d}
(Cond) et be (@)
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12

It is derivable in PHL. Indeed, assuming {bc} p {d}, by (Test) and (Com-
position) we obtain {c} bp{d}. In a similar way we obtain {c}bp{d}. Thus,
by (Choice) we get the conclusion {c}bp+bq{d}. In a similar way one shows
derivability of the translation of (While) rule:

(Wh) {beypie}
{c} (bp)*b {bc}

Atomic rules are potentially interesting for the reason that they express
partial correctness of a compound program, subject to partiall correctness
assumprions about its atomic components. The rules of PHL can be viewed
in this way. For example, the (Composition) rule says that the composi-
tion of two programs is partially correct under the assumption of suitable
partial correctness assertions for both the programs. Hence one of the issues
of completeness of PHL can be expressed as follows. Given an atomic rule
which is valid. Is it derivable in PHL? An affirmative answer is given in the
following result.

THEOREM 4.1. (Kozen and Tiuryn, 2000)
Every valid atomic rule of the form (13) is derivable in PHL.

Proof:  We sketch the main steps of the proof of Theorem 4.1. For a finite
set @ of PCAs an a PCA ¢ we write @ I ¢ if the conclusion ¢ is derivable
from the premises ® in PHL. Suppose @ is a set of atomic PCAs and ¢ a
PCA such that ® I/ ¢. A Kripke frame f is constructed such that & F ®
but & ¥ ¢.

Let us call an atom any maximal propositionally consistent conjuction
of atomic propositions, which occur in ® or ¢, or their negations. Atoms
are denoted «, 3,7,... . We identify an atom a with the conjunction of
all formulas in «. The set K of states of our Kripke frame is the set of
all atoms. For propositons b,c we write b < ¢ if b — ¢ is a propositional
tautology.

For atomic programs ¢ and atomic propositions b, define

mg(a) € {(, B) | @ ¥ {a} a {B}}
mg(d) ¥ {a | a < b}

Since all premises in ® are atomic, it follows that R = ®.
To conclude the proof we show that for every program p and for all
atoms «, 3,

i {a}p(f} = o p. (14)

One shows the contrapositive of (14) by induction on p. Having proved (14)
let us assume that ® t/ {b} p {c}. By the (And/Or) rule, there must exist

paper.tex; 19/11/2001; 0:03; p.12



13

a < band 3 < ¢ such that ® I {a} p {3}. Hence, by (14) we conclude that
a % B,ie. AF{b}p{c} n

The reader may have started wondering whether thet reason for com-
pleteness in Theorem 4.1 is that the set of all valid atomic rules is relatively
small. i.e. simple. It follows from the next result that in fact it is not the
case: decidading validity of an atomic rule is as difficult as deciding validity
of a quantified propositional formula.

THEOREM 4.2. (Kozen, 1999)
The set of all valid atomic rules of the form (13) is PSPACE-complete.

The original proof of the lower bound in the above theorem was by direct
encoding of polynomial space-bounded deterministic Turing machines. A
shorter proof can be found in (Cohen and Kozen, 2000), where the reduction
is from the universality problem for nondeterministic finite automata.

Let us observe that the assumption of atomicity of a rule in Theorem 4.1
is essential. Indeed, the following rule is valid

{b} p* {c}
{0} p {c}

but it is not derivable in PHL. The reason is that in the rules of PHL
one can never get a conclusion PCA with a program which is simpler than
any of the programs occuring in the premises. Hence, in order to obtain
completeness for more general rules, we have to enrich the system. We will
use the idea of weakest liberal preconditions.

(Iteration-Reverse) (15)

4.1. WEAKEST PRECONDITIONS
We extend our assertion language with formulas of the form
b — [p1llp2l--- [pnlc,

where b, ¢ are propositions and p1, . . ., p, are regular programs. We call such
formulas extended PCAs. When n = 0, the above expression reduces to the
ordinary proposition b — c. In this sense extende PCAs contain proposi-
tions. We will abbreviate 1 — [p1] [p2] - [pnlc by [p110p2] - -- [pnlec.
We assume that in a Kripke frame with each extended PCA a set of
states is assigned, i.e. that extended PCAs are assigned truth values in
each state of the model. We assume that the interpretation is such that the
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following properties are satisfied.

[s = [al9] < Vi[(s,t) € ma(a) = ¢ = 9] (16)
[p+qly < [plyY A [qly (17)
[p; g1y < [pllqle (18)

p*1y — YA pllp*ly (19)
b1y < (b— ). (20)

In (16) a is an atomic program. This property establishes the expressiveness
of the weakest precondition in the language of extended PCAs. Properties
(17-20) are axioms of PDL (see (Harel et al., 2000)) and are related to the
basic properties of the weakest liberal preconditions for the first-order case
(cf. Theorem 2.1). We will use letters ¢, 1,y to range over extended PCAs.

Now we enrich PHL in order to get the completeness for arbitrary valid
rules.

(Atom) {laly}a{y}

{b} p {c}
(Extended PCA Intro) b [ple

Figure 3. EPHL, Extended Propositional Hoare Logic: PHL, as defined in Fig. 2,
augmented with the above two rules. a in (Atom) is an atomic program.

PROPOSITION 4.3. For every Kripke frame K satisfying (16-20), the az-
iom (Atom) holds in K and the rule (Extended PCA Intro) is valid in
.

Proof:  Validity of (Atom) follows immediately from implication — in
(16). Validity of (Extended PCA Intro) is proved by induction on p. For
an atomic p it follows from the implication < in (16). Each of the induction
steps is handled by one of the properties (17-20). The proof is routine and
we leave the details for the interested reader. ®

The next resuls says that the axiom (Atom) can be extended to all
programs. Let us denote by Fpprr {¢} p {¢} derivability in EPHL the

PCA {¢} p{¥}.
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PROPOSITION 4.4. For every program p and for every extended PCA 1,
the PCA {[ply} p{¢} is derivable in EPHL, i.e. Fppur {[p1vy} p {4}.

Proof:  The proof is by induction on p. The base step is just (Atom). We
just show the induction step for p being a composition ¢; ; go. The other
cases, being similar, are left for the reader. By the induction hypothesis we
have

Fepar { L1l [g2d ¥} q1 { [g219)}
and

Ferar {[g21v} g2 {¢'}.

By (Composition) we obtain

FEPHL{[mJ[%]¢}QI§QQ{¢}
By (18) and weakening we obtain

Fepan {la1; 21v} a1 g2 {¢}.

Let us show how to derive in EPHL the rule (Iteration-Reverse) (see
(15)). Assume {b} p* {c}, by (Extended PCA Intro) we get

b— [p*lec. (21)
Since by (19)
[p*lc < cA [pllp*le, (22)
it follows by propositional reasoning that
[p*lc—c (23)
and by (21) and (22)

b— [pllp*le (24)
Now, we have an instance of (Atom):

{Ip1 [p*1c} p {Ip*1c}.
Thus by (23), (24) and weakening we obtain

{0} p {c}.
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THEOREM 4.5. (Kozen and Tiuryn, 2000)
Every valid rule of the form (13) is derivable in EPHL.

Proof:  For a given set X of extended PCAs we define the Fisher—Ladner
closure FL(X) in a similar way as in PDL (see (Harel et al., 2000)). A set
X of extended PCAs is said to be closed if it satisfies the following closure
properties:

— bsyYPpeX = beXandypeX

- 0eX

— p+qly e X = [ply € X and [qlyp € X
— Ip;qdyveX = [pllgly € X and [qly € X
- pflyeX = ¢YeXand [pllp*lyp e X

- lyeX = b—oyeX

— ly e X = ¢ elX.

FL(X) is the least closed set containing X. The important property of this
closure is that for a finite set X of extended PCAs, FL(X) is again a finite
set of extended PCAs.

Let ® = {by — [p1lci,...by — [pplen}, where {bi}pi{ci}, ..., {bu}pn{ca}
are the premises of the rule (13).

An atom « is a set of formulas of FL(®) and their negations satisfying
the following properties:

(i) for each 9 € FL(®), exactly one of ¢, ¢ € «
(ii) forb > ¢p € FL(®), b > p e < (bea = ¥ € a)
(iii) 0 &
(iv) for [p+qly € FL(®), [p+qly € « < [ply € a and [¢ly € «
(v) for [p; qly € FL(®), [p; qly € a <= [pllgly € «
(vi) for [p*1y € FL(®), [p*1Y € a < 9 € e and [p] [p*1yY € «
(vii) for [b]y € FL(®), blY € <= b— 9P € «
(viii) if {b} p {c} € @, then b — [plc € a.

Thus atoms represent consistency conditions not only implied by proposi-
tional logic, but also the properties (17-20). It follows that since FL(®) is
finite the set of all atoms is finite too. Let K be the set of all atoms.

Now we can construct a finite Kripke frame & with states K. We define

mg(a) ¥ {(a, 8) | V[al¢ € FL(®) ([aly € a = ¢ € B)}
ma(b) ¥ {a|be a}
ma(Iply) € {a | 1Y € a}

for atomic programs a, atomic propositions b, and extended PCAs of the
form [pl+. The meaning function mg is lifted to compound programs and
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propositions according to the usual inductive rules. It is immediate to show
that for every proposition b and a state «,

bea < al=b.

In the above definition of the frame K, formulas of the form [pli occuring
in FL(®) are treated as atomic. However, if for a given extended PCA
=0 — [pi11lp2]--- [pplc we denote by ¢ the PCA {b} p1;...;pn {c},
then the following property can be proved in &: for every ¢ € FL(®) and
for every state a, ~

Y Ea= a1 (25)

To prove (25) we first show by induction on p that for an extended PCA
[ply € FL(®) and atoms «, f3,

[p]@bEaanda%ﬁ = ¢ € f.

Then (25) follows by a simple induction on .

Let ¥ = {{b1} p1 {c1},...,{bn} pn {cn}} be the set of premises of the
rule (13). It follows from (25) that & = V.

Let us recall that, as in the proof of Theorem 4.1, we identify an
atom « with the conjuction of all formulas in «. To complete the proof
of Theorem 4.5 we prove that for every program p and all atoms «, 3,

U Yepur {a} p{B} = « % . (26)

The proof of the statement contrapositive to (26) is by induction on p. For
the base case we use the axiom (Atom), (Weakening) and the meaning
function for atomic programs.

Now, if U /gprr {b}p{c}, then it is easy to show by the (And/Or) rule
that there exist states a, 8 such that « = b, 8 |= ¢ and ¥ Vppyp {a}p{B}.

Thus by (26) we obtain « % B and therefore « j= {b}p{c}. This completes
the proof. 1 ‘
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