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ABSTRACT

The main aim of this paper is to formulate "natural' logical
foundations for type-free A-calculus. The importance of such foundations
for analyzing arbitrary order computational properties of programs is
emphasized.

A-logic is a deductive system based on combinatory A-terms.

Its language is conceived by extending the set of A~terms through the
addition of new terms which are logical connectives. The model for
'A—logic is Dana Scott's D_» which can be represented as a pseudo—-Boolean
algebra.

We present detailed proof that D_ can be constructed as a Heyting
algebra, thus being a model for some Heyting intuitionistic logical system.
Our result, briefly described above, poses new problems. In particular,
the relation between algebraic models of computer languages and the
algebraic model theory is of great interest if one wants to establish a
logical framework for the verification of programs written in these

languages.
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INTRODUCTION

A-logic is an axiomatic theory based on combinatory A-terms.
It differs from many existing axiomatic systems because of its type-
free nature. The reader is assumed to have some understanding of the
basic theory of A-conversion.

Our Motivation and Historical Sketch follows this brief
introduction. The reader who has had experience with A-calculus and
is familiar with the construction of the D_ model can skip most of
Section 1. Section 2 will deal with problems arising in the logic
which is based on combinators. We propose that D, be used as a model for
such a logic. 'The analogy of our approach with vVon Neumann's resolution
of set theory antinomies is discussed. Section 3 constitutes the proof
of the hypothesis presented in Section 2 that D_ is a pseudo-Boolean
algebra. So, Section 3 is the soul of this paper and is quite involved
with lattice-theoretic proofs.

Finally, Section 4 describes the formalized theory of A-logic
in a rigorous manner. The proof of consistency of A-logic concludes

Section 4.
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MOTIVATION AND HISTORICAL SKETCH

The beginning of the mathematical science of computation as
it is understood today goes back to John McCarthy's "Towards a
mathematical science of computation” (McCarthy 1963). In that paper
McCarthy sets up the framework and stated main problems of the field
which is called now theoretical computer science. He asks, "What are

the axioms and rules of inference of a mathematical science of

computation?....Ideally we would like a mathematical theory in which
every true statement about procedures would have a proof..." (1963:22)

McCarthy also points out the necessity of a new logical theory in whic¢h
neither the integers nor any other domain (e.g., strings of symbols)
are given a special role. Of course, these were not the only problems
pointed out by McCarthy, but without doubt they were fundamental.
Almost twenty vears have passed since the publication of this remarkable
paper. Since then, many approaches to the science of computation have
been developed.

Very important contributions were made by Zohar Manna and his
students. In connection with the setting up of a logical framework,
a paper by Manna and McCarthy (Manna, Z. and J, McCarthy 1970) is
especially noteworthy. In this paper partial function logic was
developed in the frame of 3-valued predicate calculus. Manna (Manna 1974)
deséribes all kinds of inductive methods for proving properties of
programs. He uses first-order propositional logic for proving theorems
about flowchart programs. And for recursive programs, he uses the so-
called "fixed point" approach. Such properties as termination, correctness,

and equivalence are transformed into equivalent formulas of first-order



predicate logic. Manna (Manna, Z. and A. Pnueli 1970:555) writes:
"...we try to find an algorithm which will construct for a given program

P (in the given language) a first-order formula W, characterizing its

P
execution. Then, for example, the problem of proving the convergence and
correctness (with respect to a given assertion) of the program can be
reduced to the problem of proving the validity of a formula constructed

by the use of WP." However, this method has its own irrefutable limitation.
In the same paper (Manna, Z. and A. Pnueli 1970) Manna noticed that

very important properties cannot be formalized by first-order formulas.

He suggested the use of second-order calculus, applied by Cooper (Cooper

1969) for flowchart programs. The remaining question is, what if some

programming concept has a higher than second-order nature?

In his 1976 ACM Turing Award lecture, Dana Scott calls the

results described by Z. Manna (Manna 1974) as only the first chapter

of the theory of computation. He writes, '"The second chapter already
includes procedures that take procedures as arguments -- higher type
procedures -- and we are well beyond program schemes. True, fixed-point
techniques can be applied....The semantic structure needed to make this

definite is the function space." (1976:639) Here we come close to the

so-called Scott-Strachey approach to programming language theory. Tn

fact, our work is completely based on Scott's remarkable theory.
Starting in the early 60's, the A-calculus has been used as

an important tool "...in examining properties of programming languages

precisely because it brings out very clearly the connection between

a name and the entity it denotes, even in cases where the same name is

used for more than one purpose." (Stoy 1977:xxiii -- Foreword by Dana S.

Scott) A-calculus models of programming languages were studied by



J. H. Morris in his Ph.D. dissertation (Morris 1968). Morris discovered
the relationship between purely formal computation and the more informal
notion of solutions for combinatorial equations. Morris (Morris 1968)
investigated the paradoxical combinator Y and used it in constructing
recursively defined functions. He showed that minimal fixed points
produced by Y correspond exactly with the usually understood notion of
recursive computation (1968:40-75) However, mathematical basis was
needed to support this approach or, as a logician would say, a model
was needed for consistency. The first to construct a model was Dana S.
Scott. It was called D_ (D. Scott 1973). Historically it was the
first solution to the isomorphic domain equation

D= [D— D].
In the conclusion of his paper, D. Scott writes: '"Though the words
'calculus' and 'logic' do have general significance, I would propose
calling the system of Church and Curry A-algebra (or if you like:
combinatory algebra)....What I have done is to introduce something new:
limits and topology. Therefore, in analogy with classical mathematics,
I would like to call the extended theory A-calculus." (D. Scott 1973:186)

"...the terminology 'combinatory logic'

In another paper D. Scott writes:
is still premature despite all the works of Curry and Fitch. We shall
certainly establish connections with the usual kind of predicate logic,
but it seems to this author that much remains to be done to determine
whether these are the right connections or even especially useful ones."”
(D. Scott 1975:5) 1In line with Scott's ideas, Robin Milner (Milner 1972)
designed and investigated his logic for computable functions.(LCF). He

demonstrates the soundness of the LCF with respect to models which are

partially ordered domains (Milner 1973). However, the LCF approach is



a version of the typed A-calculus, which is too restrictive to describe
high-level programming language concepts, especially when self-application
is a desired property.

Joseph E. Stoy (1977) points out the importance of self-
application for languages which allow commands themselves to be

stored in locations. Besides, in a type-free system one does not worry

about difficulties arising from type conflicts. So the unsolved question

still remains: what are the connections between free A-calculus and logic?

Because of the intimate relation between A-calculus and computer
science theory, we need but find the logic of A-caleculus to answer
McCarthy's question: '"What are the axioms and rules of inference of a
mathematical science of computation?" (McCarthy 1963:22) Through
analysis of the algebraic structure of the D_ model of A-calculus, we
attempt to solve precisely this last problem.

Interestingly enough, the solution which we propose in this work
also partially answers another problem, listed as an open problem by H. F.
Barendregt (1975). Barendregt asked: 'What is a proper intuitionistic
version of A-calculus? And is there difficulty in showing constructively
that models exist?" (Barendregt 1975:370) The answer to the last question

leads us to & new development of the so called illative theory of

combinatory logic.

We will formulate a logic based on combinatory A-terms. Then
we will prove its consitency by constructing an explicit model. To be
more precise, we will look carefully at the construction of Scott's D
model and prove that D, has the right structure to be a model for our
logic. 1In analogy with Dana Scott's naming of the extended theory of

A-algebra "\-calculus," we will call this extended theory of A-calculus

"A-logic."



1. TECHNICAL PRELIMINARIES

We assume the reader is familiar with the basic theory of
A-conversion and with the general nature of Scott's lattice-theoretic
approach. Barendregt (1977) provides an excellent introduction to the
subject. Also, he provides a full list of references. Nevertheless,
we will give a quick review of the A-calculus and D_ model. All necessary
information on lattice theory is provided. However, for a more complete
understanding of the relations between pseudo-Boolean algebras and
formalized languages the reader‘can consult Birkhoff (1960) and Rasiowa
and Sikorski (1970).

Concerning the characterization of the ordering relation of D_,
which plays an important role in our work, Wadsworth's original paper
on the subject (Wadsworth 1976) should be consulted. An introduction
to illative combinatory logic is offered by Curry and Feys (1958), with
alternative explanations of Russell's Paradox. For most of the review

section 1, expositions from Barendregt (1977) and Wadsworth (1976) are used.

A. The A-calculus.

1.1 Definition: Assuming denumerably many variables, %,v,z,...,x',v',2',...,
we define a set of terms inductively as follows:
(i) Every variable is a term.
(ii) If A and B are terms, then AB is a term.
(iii) If A is a term and x is a variable, then Ax.A is a term.
This operation is called an abstraction of A.
If parentheses are absent, then we assume application from the left to

the right.



The scope of Ax is determined similarly to the scope for
quantifiers in the usual predicate logic. Axl.(kxz(...(kdi))...) is
abbreviated as Axl...xn.A. As usual, = means syntactical equivalence.

A variable occurs free in a term A if x is not in the scope
of "\x."; otherwise, x is bound in A.

FV(A) is the set of all free variables in A. A is closed if
FV(A) = ¢.

[A/x]B results from the substitution of A for x in B, so that
bound variables in B are changed when necessary to prevent capture of
free variables of A: e.g., [y/x]Ay.xy = [y/x] Az.xz = Az.yz.

R

(Ax.A)B is called B-redex and

Rl

1

[B/x]A is called B-contractum of R;

going from R to R' is called R-contraction;

going from R' to R is called R-abstraction.

A term is said to be in normal form if it does not contain a

B-redex as a subterm.

1.2 As indicated by Wadsworth (1976), "=" is a substitutive equivalence
relation. Equational calculus is given as follows: Let M and N be A-terms.
Then (p) M= M

(8)

=
|

= N; then N = M

(T)

M =N

(Subst-) _ C[N]

for all contexts C[]. where C[] is a term except

O
—
=
—
!

for one missing subterm.
Ay.[y/x]IM, provided y £ FV(M)

() rx.M
(B) (Ax.M)N = [N/xIM

(n) Ax.Mx = M if x £ FV(M)



We say M = N iff it is provable from the axioms in (1.2).

1.2.1 Let ¥ = M.(Ox.f(xx)) (Ax.f(xx)). Then Y solves the
problem: given any A-term F, find a A-term A such that A = FA: id.e.,

A is a fixed point of F.

Theorem
For any A-term F there exists at least one fixed point A of
F, namely
A - Y(F): i.e., F(Y(F)) = Y(F).
This theorem is proved directly by applying Y to F and using the B-rule:

YF

(M. Ox f(xx)) (Ax. £(xx))) (F)

(Ax.F(xx)) (Ax.F(xx))

F((Ax.F(xx)) (Ax.F(xx)))

F(YF): i.e., YF is a fixed point.

Y is called a paradoxical combinator.

B. Construction of D,-

Because of the type-free nature of the application of A-calculus,
the domain of any interpretation must include a significant portion of its
own function space. Thus semantics of this calculus is based on a solution

of an isomorphism
(*) D= [D~— D],

where [D —> D] denotes some suitable notion of function
space from D to itself. Thus we need to construct a solution to the
equation (*). Historically, a fist solution was found by D. Scott and
was called D . We now give some definitions and properties of D,.. Again,

for proofs the reader is referred to Barendregt (1977) and Wadsworth (1976).



1.3 Definition.

The partially ordered set (D,<) is a complete lattice if
¥X ¢ D, there exists a supremum UX € D. Denote top | = UD and bottom
1 =D (i.e., largest and smallest elements of D). The supremum and

infimum of {x,v} are denoted as xUy. xNy.

1.4 Lemma
If D is a complete lattice, then each of its subsets X has an

infimum: NX = U{z[z

[1h\

X}. Here z = X iff ¥x €X, z = x.

1.5 Definition.

A subset X ¢ D is directed iff VYx,y € X 3 z € X, such that

1.6 Definition
A and B are complete lattices. A mapping f: A —> B is called

continuous iff f(Xx) = gf(X) for all directed X C A,

Here f(X) = {y = f(x)]x € X}. g means that a supremum is taken in set Dj

we usually omit D, since it will be clear from context.

Let [A — B] be the set of all continuous functions from A to B.

1.7 Definition.
Let D and D' be complete  lattices. Let $: D — D', ¥:D' — D
(®,¥) is called a projection pair iff

(i) ®,¥ are continuous

(ii) ¥x € D, ¥(9(x)) = x or ¥°@ is an identity .

(1i1) vx € D', o(¥(x)) =x



1.8 Definitionm.
Let (D,C) be an arbitrary nontrivial complete lattice. Define

D0 = D, Dn+l = [Qn—> Dn].

. n -
Define (Qn’?ﬁ) where Dn P Dn+1’ n=0,1,2,... where

X €D n

@O(x) = )y €D 0

O.X,

1y = ! . ot . N
Yox") = x (,LDO), x' €D ; .LDols nD,)-

And then, inductively, we define:

CI)n-!-l(x) = (I)no Xoll/n, x € Dn+l

' = s X'o 1
lynﬂ(x) ¥ox'ed , x' €D

n+2
Y ¥

n+l

. P S Dn< Dn+1 < Dn+2 < .
=
A\

>Dn 3 >Dn+l % >Dn+2 >,

n n+1

The inverse limit of the Dn's is called D_; i.e.,

[ee]
D, = {<xn>n=0 | T lyn(xn+l)’ % € Dn}'

1.8.1 Lemma.
Let D be a complete lattice. Then [D — D] is a complete lattice

under pointwise ordering: i.e., ft g <> yx £(x)Cg(x).

Corollary.

Vn, Dn is a complete lattice.

Definition.

Let x and y ¢ Dm; X = <X > and y = <Y > n=0" Then we say

x Ly iff yy x & Yp
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1.8.2 Theorem
Do is a complete lattice under the componentwise partial

ordering C.

1.9 Lemma

\

(i) ¥yn = 0O, (@n,Yn) is a projection pair

(ii) vn = O, @n and‘% are distributive.

1.10 Definition
Define a set of mappings inductively:

{e_,: D — D [n=0,1,2,...}

and {v D_—> Dn[n=0,1,2,...}

oo

(i) Define @Om: D — D

0 oo
Vxy € Dy O, (¥ = <yn>:='-0 €D,
such that Yo = ¥g* Yoa1 = @n(yn) n=0,1,2,...
i.e., @Ow(xo) = (XO,QO(XO), Qlféo(xo),...).

And define Wmoz D_— DO as follows:

[ee]
Vx = <x >

o =0 €D, Wmo(x) = X4

(ii) Let ®n+lw: Dn+l —> D_.

Then define ®n+lm(x) = @nmoxonn, x € Dn+1

and ‘Pmn +1: Do = Dpyp 28
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%4
= 1]
(x") =¥ _exTea , x' €D,

\Pcon‘i'l

In the last equation (x')ﬁ is used as a function on D _. It is defined
in (1.11).
1.11 Definition

[e e}
and y = <y > .  Then

[0
Let x ¢ D,y € D :i.e., x = <x > 2 n=0

n n=0
o, . : ke
x 1s a function from D, — D_, such that for any y, x (y) = z ¢ D,

[oo]

where z = <z > and
n n=0

(i) ZO = U{Xl(yo) alyo(xz (yl)) LIS Qlyoolyloi - -an(xn_*_z (yn+1)) ¢ .. }
1)z = Ul O Y G () Egotoeeo T)) s
1.12 Lemma

* . o, .
Let x € Dw. Then x ¢ [Doo — Qw]; i.e., X 1s a continuous

function from D to D .
(o] [s]

1.13 Lemma

¥f € [D,—> D] 3 x €D, such that f = .

So we see that (1.11) and (1.12) provide the following embedding:

x — x5 is the mapping D_— [D_—> D_]. We call it ¢. And Lemma
(1.13) gives the mapping from [D,— D] to D _. Call it VY.

1.14 Lemna

.. 1.

D 1is homeomorphic to [D_ —> D_] under a pair of isomorphisms (9,Y¥),

9
. —
i.e., D D, —> D_I.

0
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1.15 Definition

p ={e (x)xeD}CD.

o0
D_ is a subspace of D_, and obviously D =D .
n L n n

m

o .
Let Pn ¢ oY : D — Dn: i.e., a projection from the space D

no ooqn o

o0
into the subspace Dn' For convenience, we write X for Pn(x),

x € D _, and we write x(y) for x*(y) and f for Y(f).

1.16 Lemma
For all x and y € D_:
1 Lo =1-= np_,
(i1) T(y) =T = Up_

(iii) x = y iff X =y, for all n = 0.

It

1.17 Lemma

fee] [eo] (e o]

Dy LDy LD, L...ED L ...CD,.

C. D_ as a model for A-calculus

Since D = [Dm-—> Dm], it is an appropriate model for a language
where application is allowed without type limitations. Of course, then
D_ is a possible model for A-calculus, since if A and B are any terms,
then A(B) and B(A) are perfectly defined terms. Thus, we should be

able to map our language into the D, model.

1.18 Definition

(1) Let p: {variables} —> D_, 0 is called a valuation in D_.
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(ii) For d € D_ and x a variable, p(d/x) = p', where p' is a valuation

in D_, such that p'(y) = p(y) if y # x and p'(x) = d.
(iii) The interpretation { of any term A in D_ under p is denoted
20 AT (p) and is a mapping from the set of A-terms into the D_. It is
defined inductively:
(s1) 2flx1 (p) = p(x), where x is a variable.
(s2) 2] (o) = MM (p)) RUNT (o).

(s3) 2l ax.M1 (p) = ¥(Ad € D_.RI[MT (p(d/x))).

1.19 Theorem
Axioms (p), (8), (1), (subst.), (a), (B), (n) of (1.2) are valid

formulas under the D interpretation.

1.20 Theorem

Doo is a model for A-calculus.

D. A characterization of L in D_.

The following is due to Wadsworth (1976).

1.21 Definition

Each A-term M is of the form M = Axl...xn . (Ax.P) QMl"'Mﬁ

or M = Axj...X X AA)..LA L (Ax.P) is called the head redex of M.

In the second case xi is the head variable of M and M is said to be in

a head normal form (compare with the definition of the normal form in

(1.1)).

1.22 Definition

Let M and N be terms. Then we say ML N iff J[MJJ(p) LY N I (p) for
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any valuation p € (Var — D ).  Var is a set of all variables.
s o]

Lemma

ML N <=> C[M] L C[N] for all contexts C[ ].

1.2 3 Definition

We say that M = N iff, for all contexts C[ ]:
W

if C[M] has a head normal form,
then C[N] has the same head normal form.

Here = stands for Wadsworth's ordering relation.
W

1.2 4 Theorem (Wadsworth)

For all terms M and N

M=N<>MTLN.
W

Here we would like to emphasize the importance of this theorem.

Theorem (1.2 4) establishes the relation between the purely syntactical
concept of the "head normal form" and the semantical relation "L" in D_.
Thus, we have this important link befween syntactical form and semantical
content. Historically, this kind of property made mathematics a
deductive science and created the science of mathematical logic.

With this in mind, we attempt to explore this link and the deductive

reasoning system behind it.
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2. D_ VERSUS RUSSELL'S PARADOX

A. Relation to Von Neumann's set theory.

In June 1901 Bertrand Russell discovered a paradox which shook
the mathematical world. In his letter to the great logician Gottlob
Frege he communicates: "Let W be the predicate: to be a predicate
that cannot be predicated of itself. Can W be predicated of itself?

]

From each answer its opposite follows." {Russell, "Letter to Frege,"

1967:125)
This may be written as follows: Let F(f) be the property of

properties f defined by the equation

2.1 F(f) = ~ f£(f), where "~" is the symbol for negation.
Then, substituting F for f in (2.1), we get

2.2 F(F) = ~F(F)

i.e., F has property F iff F does not have property F, which obviously
is a contradiction under the assumption that F(F) is a proposition
(true or false).

The usual explanation of this paradox is that such a definition

of F (2.1) or, at any rate, F(F), is "meaningless.” In the case of set

theory, this paradox is formed as follows:
2.3 Let R = {X: X { X}.

Now, we ask, '"Does R itself satisfy the condition X ¢ X?" If R £ R,

then by definition (2.3) R € R; then, again by (2.3) R £ R. So both

assumptions lead us to a contradictory conclusion.
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The above argument is called Russell's Paradox.
Thus, suddenly mathematicians were faced with the necessity of
revising Cantor's naive ideas of set theory. The first solution to
this problem was presented by B. Russell in his theory of types (1967:150-82).
He introduced typed propositional functions and typed arguments. Thus
in (2.1) the definition of F would not make any sense because f(f)
is not a proposition since f can be applied only to arguments of type
lower than itself. The types are mutually exclusive, and thus no
reflexive fallacies are possible.
However, one might think about function I, which is an identity

for any argument X
2.4 I(x) = x, thus I(I) = I.

It makes sense and does not constitute a paradox. Nonetheless, it is

a forbidden expression in Russell's theory. Moreover, many functions

in mathematics are defined through self-referencial definitions.

Zermelo's axiomatization of set theory (Zermelo 1967) appeared

shortly after Russell's theory of types. Unfoftunately, since Zermelo

pays no attention at all to the underlying logic, the notion of "proposition"

is left unspecified. Thus the formulation of Russell's Paradox in (2.1)

is not adequétely resolved in Zermelo's system, while that in (2.3) is.
What we need is a reasonably flexible definition of the notion

of a function. By prohibiting f(f) we exclude paradoxes —-- "But there

is evidently something about the preceding intuitive argument (2.1) which

is not explained by such exclusions." (Curry and Feys 1958: 4 )
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Looking at (2.1) [F(f) = ~f(f)] more carefully, we notice that
not only is a self-applied f£(f) construction involved, but also Ay
a logical sign. This suggests that something could be wrong with our
naive use of the operation ~ of negation: i.e., the underlying logic
should be rigorously defined. Finding an appropriate underlying logic
might provide us with an alternative explanation of Russell’s Paradox and

permit a more flexible definition of function -- e.g., one that allows

self-application for a great variety of functions.

Form (2.1) of Russell's Paradox can be easily expressed in
our A-notation. Let N represent a negation sign: 1i.e., we assume that
the negation is a normal combinator and all A-calculus conversion

rules can be applied to it. Then (2.1) is equivalent to defining

2.5 F = M.N(ff).

That is, we permit the A-abstraction of N(ff).
2.6 Then F(F) = (Af.N(ff))(F) = N(F(F)).

That is, we arrived at a contradiction. So, the essential assumption
here is whether the A-abstraction in (2.5) is consistent with our
system. In fact, by theorem (1.2.1.), any A-term has a fixed point
derived by application of the paradoxical combinator Y:
(2.7) NQIN) = YN.

Let YN = A. Then N(A) = A.

That is, the system of our logic is inconsistent. (This is

why Y is called paradoxical).
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Now, return to the third possible resolution of the paradox
in form (2.3), formulated for sets -- namely, the set theory proposed
by John Von Neumann in 1925. We are refering here to the original
approach of John Von Neumann, and not to the more well known theory of
sets and classes (NBG: a somewhat changed version of Neumann's set
theory by P. Bernays and K. Godel). The main difference between both
theories is that Neumann used "function" as the basic notion, rather
than using set and class.

Von Neumann's theory is then much closer to the ideas of
combinatory logic than the NBG or Zermelo systems. The notion of "set,"
can be easily included in the notion of "function" (a set can be
identified with its characteristic function).

To build a consistent model of set theory Neumann considered
two domains of objects: the domain of arguments and the domain of

functions. The two domains are not identical, but they can overlap.

In other words, there exist "argument-functions" which belong to both

domains. The main question is

2.8 "What 'functions' are at the same time 'arguments'?" (Von Neumann,
in van Heijenoort, ed., 1967:397)

All of them? 1If so, we easily derive Russell's and many other antinomies

of naive set theor?. Neumann then imposes certain restrictions on his

domains and gives a condition under which "function" will fail to be

an argument. He speaks of "I-objects," "II objects,”" and "I-II

objects" instead of "arguments," "functions," and "argument-functions,"

respectively. Of course, "I-II objects" are the hardest to define. It

could be required that every I-object be an I-II object: i.e., ea;h

object is also a function.
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We shall not present here the details of the model of set
theory proposed by Von Neumann (in van Heijenoort, ed., 1967). The
main point hasfbéen to indicate the cornerstone of that theory -- namely,
question (2.8),’£he resolution of which helps to avoid antinomies
and gives a consistent theory.

Return now to the formulation of Russell's Paradox in (2.7).
If we consider A?terms to be functions (as Church originally intended),
a strong analogy with Von Neumann's set theory is apparent. Then,
maybe, the resolution of (2.8), reformulated for A-terms (functions),
will explain what is wrong in (2.7).

O4r view is that YN must be excluded from consideration as a
A-term because it is simply fmeaningless." But then what is the
definition 6ff“méaning" for a A-term? Looking ahead, we note that
in Von Neumann's terminology N simply is not a “function-argument,"
but just a "II-object.'" However, in Von Neumann's theory the class
"I-II" is precisely defined. Unfortunately, this definition does not
work in our case. But then the question is: can we rigorously define a
class of ) —temms which is analogous to Von Neumann's class of "function-
arguments"? The: answer is yes!

Thevsubject of our discussion is a kind of logic based on
’terms as propositions. In fact, this idea is not new. The so called

illative combinatory logic started its development as a system of formal

logic in Church's works. This system used Xcalculus as its algebraic

language and, ‘most important, it contained implication, negation, etc.

Hwever, this sytem was proved to 'be -inconsistent (e.g., (2.7)). Its
inconsistencies clearly demonstrated that illative combinatory logic was

not as simple as originally supposed. The name "illative" was used
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because such concepts as quantification, implication, etc., were present
in the system, bringing if closer to logic in the classical sense.

The word "illation" comes from the Latin "inferre," i.e., a logical
deduction. So, instead of constructing a completely new notation, we
start as in the usual exﬁosition of ICL (illative combinatory logic),
e.g., as done by H. B. Curry and R. Feys (1958) or R. Hindley, B.
Lercher, and J. Seldin (1972). But this parallel does not go far.
Immediately after exposing that the system fails to work, we propose

a different approach from not only the so called theory of functionality
but also from other systems as well. We don't accept the theory of
functionality because it is actually the same as Milner's LCF (Milner
1972). The shortcomings of this system were explained in our Motivation
section.

Other systems, in our view, are simply inapplicable to the
mathematical science of computation, although they‘have their own
significance as an ultimate foundation of logic. As far as the
mathematical science of computation is concerned, we feel that our

approach is "natural."

B. 1Inconsistency of illative logic (Hindley, Lercher and Seldin 1972:102)

In addition to A-calculus equational theory (1.2), we want to

consider statements of the form
2.9 FX, where X is a A-term.

(2.9) is called an assertion and is considered to be a statement. The
intuitive meaning of "assertion'" is the same as "formula" in usual logic.

We postulate the following rule:
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2.10 Rule Eq. X =Y & |-X, then }Y.

2.11 Definition.

We abbreviate
}—Al §...& FA = [X as AjLA ... ,A X

Now we adjoin new terms whcih represent usual logical connectives and
quantifiers to the set of A-terms. They are P, N, and some others
indicated later.

Example: PXY in our metalanguage means X => Y (X implies Y), and N¥
means ~X (negation of X). We would like to postulate rules which would
be similar to those used when implication and negation are used in

the orthodox sense. At least wewould like to have the following:

2.12 Modus pomens. PXY, X} Y (i.e., X =Y, X} ¥)
and
2.13 } PPXERY)) (BXY) (i.e., F (X= (X= 1)) = (X = 1))
Since combinatorial notation is not customary to our eye, we abbreviate
2.14 (i) X =Y = PXY
(i1) ~X = NX
2.14.1 Definition
We will refer to this sytem of equational calculus --
(1.2) together with (2.9), (2.10), (2.11), (2.12), (2.13) —- as the
B-system.
Now, it is easy to show that this sytem is already inconsistent

in the sense that FX is provable for every A-term X! Let X be any A-term.
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2.15 Let Z Az.(zz => (zz = X)) z ¢ FV(X).

2.16 let M

ZZ.

From (2.15) and B-reduction and (2.16)

]

2,17 M =22 = (Az.(zz => (zz => X))) Z

1l

27 => (27 => X) = M=> (M= X).
Replacing X by M and Y by X in (2.13) we get
2,18 F M= M= X)) = (M= X).

But (M=> (M=> X)) = M by 2.17. Then, using Eq.,
2.19 M= (M= X).

From (2.19) and (2.18) and modus ponens (2.12),
2.20 b M= X.

Then, by (2.19) and (2.17),

2.21 F M.

Hence, from (2.20), (2.21) and modus ponens,
2.22 | Xx.

Since X is an arbitrary term, the B-system is inconsistent. What is wrong?
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C. D, as a model of illative logic.

The close relationship between logic and algebra is a well

established topic in modern mathematics. Boole discovered thatr logical

rnon "non

notions such as '"proposition," '"not," '"or, and" can be interpreted

in some special class of algebras, which we now call Boolean. It

has been realized that after the identification of equivalent formulas

in a formalized theory (e.g., first order predicate calculus), the set

of all formulas can be embedded into a lattice. This lattice is called
the model of this formalized theory. The kind of lattice used for
embedding depends on the type of logic under consideration, and vice versa.
Such an embedding is called an interpretation.

For classical logic Boolean lattices are used. For intuitionistic
logic, as formulated by Heyting, the corresponding model was proven to
be a pseudo-Boolean lattice with zero, or a Heyting algebra. The
algebra of subsets of topological spaces happened to be a suitable model
for modal propositional calculus. H. Rasiowa and R. Sikorski (1970)
present in uniform manner the algebraic approach to classical, intui-
tionistic, modal and positive logic. This approach was used signi-
ficantly by computer scientists for the creation of the denotational
semantics theory. A good example is section 1.C., where D is proven to
be an algebraic model for A-calculus. There, A-terms were interpreted
as points in D,.

Now, if we extend the set of A-terms by adding new terms such
as N-negation and P-implication, it is in the spirit of an algebraic

approach to interpret these new terms (which are logical connectives

in our metalanguage) somehow in our D_ model.
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Thus, extension for a mapping %[ 11 (1.18) is needed.
Assume that we extended interpretation to N and P. Since the structure
of D_ is a much clearer matter than the hidden structure of the |
deductive B-system, it can be used to explain inconsistency (2.22),
and, of course, any other paradox which involves this system (e.g.,
Russell's Paradox (2.7)). By theorem (1.8) D_ is a complete lattice
under componentwise partial ordering. In the algebraic semantics of
classical logic (CL) negation, " ~'" is usually interpreted as a complement
operation in a corresponding Boolean model B. It also has an operation
corresponding to implication. The interpretation of tﬁe implication is

given by:

2.23 [=17 =Xxxy .x' Uy, where x, vy € B and "'" is a complement
operation. That is [[ = ] : B2 —> B.

For intuitionistic logic (IL), the model is Heyting algebra H.
The negation "~" and consequence '-==>" operations in IL differ from CL's
implication according to IL's and CL's systems of axioms. Therefore
these operations assume a different interpretation than in Boolean algebra.

The notion of pseudo-complementation is needed to define
negation and implication. We will define it later, and now assume it

2

exists and it is the mapping ﬁ>: H® —> H. If 0 is the zero element of

H, then

2.24 we define : H > H by ﬁx = (x i Q).

H
It turns out that such an interpretation of logical connectives

translates axioms of IL into valid statements about algebra H, This means



25

that the metatheory of IL coincides with the theory of pseudo-Boolean
algebras. In particular, the existence of this model for IL means
the consistency of IL as a logical system.

The meta meanings for N and P in 2.B are negation and implica-
tion. Then (2.12) becomes a modus-ponens rule and (2.13) translates
into one of the axioms of IL.

In (2.B) we abbreviate PXY as X => Y and NX as ~X. Here
X and Y are not propositions of IL or CL, but arbitrary A-terms.

Is such an abbreviation just a notation to which our eye is accustomed,

or is there some link between intuitionistic logic and logic based on A-terms?
Metanotation for the deduction rule (2.12) and axiom (2.13) suggests

that the second assumption might be true. Can we define this link in

precise mathématical terms? Yes! But we need some preliminary

assumption, which we will prove in the next section.

2.25 Hypothesis: D_ is a Heyting albegra. Now, operation of the
relative pseudo-complementation is well defined in D and thus it can

be used for interpreting negation and implication, in a manner similar

to that carried out by H. Rasiowa and R. Sikorski (1970) for the
propositional IL. All needed definitions concerning Heyting algebra
appear at the beginning of the next section.

Hypothesis (2.25) provides us with the natural (we claim)
interpretation of the A-calculus extended by N and P. Let "=" be
pseudo-complementation in D_. Let 1 be the smallest element in D_.
Now we can extend the structural induction 1ist (1.18) of S1, 52, S3

interpretation rules by following S4 and S5:
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Let X, Y be already properly interpreted by &[[ X ]](p) and

LMY N(p). Then

2.27 (84) fMPxY N1(p) = (RUXT(p) => MY ]I (p) € D

2.28 (s3) &I NXTI(p) = (RUXT(p) =>1) € D

In (S4) the interpretation of PXY is the pseudo-complement
of L[ XN (p) relative to L[[ Y 1(p), which exists by our hypothesis.
In (S5) the value of N(X) is interpreted as a pseudo-complement of the
LOXN(p) in D_. Again, it is well defined due to hypothesis (2.25).

It thus appears that at last we have natural restriction on
the notion of "A-term" or, corresponding to it, the notion of "proposition"
for the illative B-system. The question, what is a proposition and what
is not, is a decisive factor in the settlement of Russell's Paradox.

We postulate the following Principle.

2.29 Principle
A term X is meaningful or is a proposition if and only if

for any p it has the interpretation 2[[ X ]1(p) € D_.

Now we will use the Principle (2.29) to show that the reasoning
in our demonstrations (2.7) and (2.15 - 2.22) was erroneous from the
point of view of the semantics of D _. By (S2) in (1.18)

LI AB I(p) = 6(RIM AN LB H(b)). Let Y be the paradoxical
combinator defined in (1.2.1) and N be the negation introduced by (S85).

Then

2.30 2[YNII(p) = 2(REY DCe)) RN T (P)).
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Well, ([ Y N(p)) is well defined and is known as Tarski's fixed point

operator. However, L[[ N ]J(p) was never defined in our system. Thus

for (2.30) to make sense, at least N should be interpreted. But can

N be interpreted without violating the Principle (2.29)? 1Let us try.
Assume that N is a meaningful term. Then all axioms of

A-calculus can be appliéd to it. Therefore, by the n-axiom from (1.2) we

can derive

3.3 (x . Nx) N (by the extensionality property), whence

]

2.32 &IINN(p) = LML Ax . Nx ]I (p).

Then, by (S3) in (1.8) it follows that

|}

2.33 L[[NII(p) = ¥(Ad € D_ . LI Nx N1(p(d/x))) which, by (S5) of (2.28)

¥(AM €D_ . d=1).

This last‘expression is well defined if and only if function

()d ¢ D_. d =J1) is an element of [D00 - Dw]: i.e., it should belong

to the domain of the mapping ¥. This is, we claim, the hidden source of

Russell's Paradox.
2.3, Tet N =)xd €D .d=1.
[ee] [ee]

It follows from the definition of continuous function (1.6) that if f is
continuous, then it is monotonic or order preserving.

.L and T denote, respectivelly, minimal and maximal elements

of D . So 1<TT.

2.35 But NmCL) > Nw(T) (i.e., not order preserving) because
Nw(J-) =1 >4 =T and

N =4 =T =] (see definition of "=>" in the next section).
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Thus N, is not an order preserving function and therefore is not
continuous. Whence, NOO £ [Doo - Dw} and W(Nw) in (2.33) is not well
defined.

Thus [ N JI(p) does not have a meaningful interpretation in
D_; hence, LMH YN NI(p) in (2.30) is not meaningful. Therefore, according
to our Prinéiple (2.29) Y(N) is meaningless. It is not a proposition.
Thus the paradox disappears and the argument becomes nothing more than
a proof that L[[N]J](p) is not continuous and therefore N cannot be
used as an argument for another term without violation of the denotational
rules S1 = S5. However, N can be used as a function since L[N [J(p):
D00 — Dw: That is, it is a function and, being applied to any meaningful
(by Principle) term, it produces a point in the D : In other words,
another meaningful term.

The similarity with J. Von Neumann's solution exposed earlier

in our work is striking. Generally speaking, our Principle is an answer

to Von Neumann's question (2.8) of "What functions are at the same time

' Our answer is: continuous functions on D, are at the

'arguments.''
same time arguments.
Let us show how our Principle resolves paradox (2.5) - (2.6)

and paradox (2.15)-{2.22) of R. Hindley, B. Lercher and J. Seldin (1972).

In (2.5) we defined F = Af . N(ff). Then L[[ Af . N(££)](p)
=M €D . d(d) =L1.

2.37 Let F = (Ad €D, . d(d) =>1) € (D, —> D). Then F_(F ) does
not have denotation since F, is not continuous. The fact that F_
is not continous and therefore cannot be used as an argument can be easily

seen by applying F_ to_L_and'T , as done in (2.34) and (2.35) for N_-
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2.38 FLA) = A =L = d=1) =T,
2.39 F (M = (T(M =1) = T=L) =L
That is FmCL) > Fm(T). Hence, F is not a continuous mapping and

therefore is meaningless by the Principle. So, the abstraction of
N(ff) in (2.5) which rendered the term Af.N(ff) was an illegal step
leading to antinomy (2.6). Therefore Russell's Paradox in the form

(2.5) - (2.6) is not a paradox any more: q.e.d.

2.40 The explanation for the paradox (2.15) - (2.22) is based on the
same sort of arguing: at some point in (2.15) - (2.22) a meaningless
term was introduced and later used for deriving a contradiction.
Namely, in (2.15), Z = Az.(zz => (zz => X)) is a meaningless term
according to the Principle. It is easy to see (by $5) that if Z

had a well defined denotation %[[ 2 J (p), the denotation whould be

2.41 2z

1

I ZzN(p) = Ad € D_.(d(d) = (d(d) = L[ XN (p)))
2.42 By the definition 1 <T .

2.43 However, by (1.16) Zoo(_l.) = (Ll = LW = 20XV
=] = (L=0xN0) =T.

TM = TM = 20 XN))). which, by (1.16)
T= (T= 20 x 1 (),

2.44 Now 2 (T)
e o)

which, by the definition of "="

=T = 2 XN = LU XN)

2.45 We conclude that F (1) > F (T); unless 2I[.X ]} (p) =T for any
[e o] 0

p: Var —> D . Thus this function is not continuous.
«©
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It follows that Z in (2.15) is meaningless according to the
Principle. Thus the arguing in (2.15) - (2.22) was based on a false
presupposition, q.e.d.

Note: If &[[XII(p) =T for any (p), then the conclusion FX in (2.22)
is not a contradiction as it is claimed, and, on the contrary, is a
"true statement," according to the definition of "truth" which will
be introduced in subsequent sections.

In order to avoid contradictory arguings of the type we
exposed in (2.5), (2.7), (2.15) - (2.22), and in order to make our
logical B-system consistent, we have to reformulate the definition of
the A-term. This means that we are going to change the inductive
definition in 1.1.

We proceed with the following definition.

2.46 Assume denumerably many variables x,y,é,... and define the set
of formulas inductively as follows:
1. Each variable is a formula.
2. If M and N are formulas, soare A(B), PAB, NA, NB.
3. If x is a variable and M is a formula, then the abstraction
(Ax.M) satisfies the Principle (2.29).
4. An expression is a formula if and only if it was constructed

by application of (1), (2), (3).
The conventions on parentheses are the same as in (1.1).

2.47 Equational calculus (1.2) remains the same except for the assumptions
on M and N. Here we assume that M and N are formulas. Now, let us

move to the next section, where we prove hypothesis (2.25).
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3. D_AS A PSEUDO-BOOLEAN ALGEBRA.

All proven results in this section are due to the author.
The sources of the theory of péeudo—Boolean algebras are Garrett Birkhoff
(1960) and H. Rasiowa and R. Sikorski (1970) Knowledge of section 1.B is

essential for understanding the theory developed henceforth.

3.1 Definition.
Let D be a lattice and a,b € D; then a Ub and a N b are

the supremum and infimum, respectivelly, of {a,b}.

3.2 Definition.
Let a,b be elements of a lattice (D,<). An element ¢ €D

is said to be the pseudo-complement of a, relative to b, if c is the

greatest element., such that a ) ¢ <b. The pseudo-complement of a.
relative to b, is denoted, if it exists, by the symbol

a=>>b

3.3 Lemma.

For every x € D, x = a=>b 1ff a N x < b.

3.4 Definition.
A lattice D 1is said to be relatively pseudo-~complemented

(r.p.c.) if a => b exists for all elements a,b € D.

3.5 Definition
Let D be a pseudo-complemented lattice with the zero element
(minimal element of the D), and let a € D. Then element (a =>} )

is called the pseudo-complement of a, and denoted a*, It follows

from Definition (3.2) that a* is the grcatest element disjoint from a.
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Also, it is easy to see that for any a € D, a => a is the unit element T

(greatest element in D).

3.6 Definition.

A lattice D is said to be distributive if for all a,b,c € D,

3.7 an (b Uc)=(anNblanec), and

al (dnNc

(aUb)na U o).

3.8 Lemma.
If lattice D satisfies at least one of the identities (3.7),
then D is distributive., Distributivity can be generalized for an

infinite case.

3.9 Definition.
Lattice D is infinitely distributive iff for all x, vy €D

and {yB|B € B} ¢ D and {xu|a € A} ¢ D the following identities hold:
3.10 (A) x N Uy,) = Ux Ny, and, dually,
(ii). gxaﬂ g yB =A?B (Xa n xB)

Here (Ua ) is supremum of the set {a lu € M} and (Na ) is infimum of
MOL o] MG,

the set {au[u € M}.

3.11 Lemma.
Let D be any finite (and therefore complete) distributive
lattice; f and h be any continuous functions from [D —> D]. Then

g=)x €D . £(x) N h(x) is continuous.
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Let X ¢ D be any directed subset of D.

3.11.1 g(UX) = £(UX) N h(UX)

by continuity of f and h

= (UE(X)) n (Uh(X)),

by distributivity of D

= U{f(x) N h(y) |x,y € X}.

On the other hand

3.11.2((g(x)) = U{£(x) N h(x)|x € X}.

It follows that, since UX = X,

3.11.3 g(X) = U g(X).

However, since X is directed, for any x,y ¢ X there

exists z € X such that x,y = z.

it follows then that

Therefore f(x) <f(z) and h(y) = h(z);

3.11.4 £(x) Nh(y) = £(z) N h(z)

This means that the set A = {£(x) N h(y) |x,y € X} is majorized by the

set A, = {f(2) N h(z) |z € X}, in the sense that for any element a

of A., we can find an element a

1

1

of A, such that a, > a,. Hence

2 2 2 1

UA2 > UAl’ or by (3.11.2) and (3.11.1)

3.11.5 g(UX) = Ug(X)

(3.11.5) and (3.11.3) give us

3.11.6 g(UX) = Ug(X).

That is, g is continuous: q.e.d.
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3.11.7 Corollary.

Let fi: D — D be a collection of continuous mappi..-.
Define f = Ax. € D . ﬂfi(x) and D is a finite distributive lattice.

i
Then f is continuous.

Proof: Induction on the number of fi's using lemma (3.11).

3.11.8 Lemma.
Let D be a finite distributive lattice and F ¢ [D -> D].

Then (NF)(x) = N{f(x)|f € F} for any x € D.

Proof: Since D is finite, F is finite: i.e., F = {fl,fz,...,fk}.

k
let g =xx €D . fi(x). g is continuous by the corollary
i=1
(3.11.7). Take any x in D. Then
k
g{x) = N f'(X) = fi(x) for any 1 =1 = k.
=1 *

3.11.9 From this g = F.
But if h = fi for any 1 = 1 = k, then

h(x)

I

fi(x) for any i and x € D. Therefore

h(x) = Nf,(x) and hence
i 1

3.11.10 h = g by extensionality.

From (3.11.9) and (3.11.10) deduce

3.11.11 g = F.

k
Hence (NF)(x) = g(x) =N £, (x) = N{f(x)|f € F}: q.e.d.
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3.11.12 Lemma.

1f D, is a finite distributive lattice, then

0
1) ¥ (X)) = ny (%)
n n
D e (V) = ne_(¥)
for any n = 0 and X €D 4> YD

Proof: We prove it by induction on n.

(1) Let n = O.

We have @O(ﬂY) = Ax €D (ny)

0"
by lemma (3.11.8) and extensionality

=N{x €D yly €Y} = ﬂ@O(Y)

o -
By the definition (1.8):

¥, (%) = nx

by lemma (3.11.8)

= e £ € X} = Y, (D]

(2) Assume (i) and (ii) for all n < k. Let x € Dk'

¥ (0 (@ = ¥ (00 ()

lemma (3.11.8)

= wk(ﬂ{f(¢k(x))]f € XH

by the induction hypothesis

= N{¥ ofo0, () |f € X}

by the definition (1.8)

(X) (x) }

=¥ . (O |f € X} = N{¥

k+1 k+1

by lemma (3.11.8)

Then, by (1.8)

= (ﬂ{Wk+l(X)})(x), which proves the induction hypothesis for k+l by

extensionality. Proof for ®k+l is analogous to that above: q.e.d.
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3.12 Lemma.
In any complete distributive lattice D, identities (3.10.1)

and (3.10.%1i) are equivalent.

3.13 Lemma. Due to Birkhoff (1960:147)
A complete lattice D is relatively pseudo-complemented if and

only if it satisfies (3.10).

3.14 Lemma. Due to Barendregt (1977:1111)

Let D be a complete lattice and A some set. Let
X = >~ D .
{¢u|¢u ¢ [D—»> D] & a € A}
Then g = (Ax. U(Qa(x))) is a continuous function: That is,
A
g € [D— DJ.

From Lemma (3.14) it is an easy exercise to show the following corollary.

3.14.1 Corollary.

For any f,g ¢ [D—> D], f U g = Ax. € D . £(x)Ug(x).

3.15 Definition.

Let D be any complete and finite relatively pseudo-complemented

lattice (r.p.c.). As in (1.8) we define D_ based on DO = D.
The following theorem is a first step toward the proof of

hypothesis (2.25).

3.16 Theorem.
If D, is defined as in (3.15), then for any n, D is a
complete relatively pseudo-complemented lattice.

Proof: We prove the theorem by induction on n.



37

(i) For m =0, D, is r.p.c.

0
(ii) Assume inductively that for any n = k, the lattice Dn is a

complete r.p.c. Let f and h be arbitrary elements of [Dk —> Dk] = Dk+l'

That is, £ and h € D

e We will show that (f => h) is well defined in

Dyy1-

3.17 Let X = {p ¢ Dk+l|f N o, =h}

Observe that X # ¢ sincedl €XchD

Dk+1 k+1

Since D +

et 1 is a complete lattice, UX exists.

Let A = {a|®u € X}. We will be interested in

3.18 X = (U {e.}) €D .
+
aea & kel
The claim is that UX = (f = h), where (f=>h) is a pseudo-complement

of f relative to h in the lattice Dk+1'

By lemma (3.3) UX = (f => h) is equivalent to
3.19 (1) fnUX) =h

3.20 (2) 1f £0 ¢ =h, then ¢ = UX, where ¢ ¢ D1

(2) can be deduced immediately from the definition (3.17.1) of the set X.
Because Dk is a complete r.p.c. lattice, elements of Dk satisfy equation

(3.10) by lemma (3.13). That is,

3.21 for ally € D, and {y8k3eB} c D,

yN( Uy,) = Uy Ny, ).
g8 B B

To prove (3.19) we will need to show that:
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3.22 (U {o. P& = U {e (x)} for any x € D, . Here
€A o aca 2

S = {¢a|a € A} is any subset of Dy US exists and belongs to D,

1°
by the same arguing as in (3.18). By the definition
3.23 F=(U {9 }) =¢ for any o € A. Thus
o o
G €A .

3.24 F(x) = (U {o. D) = ¢ (x) for any o € A and any x € D

a o k

o €A

so F(x) is an upper bound of {¢a(x)|a ¢ A} for any fixed x. Hence

3.25 F(x) = U {@u(x)} (which is least upper bound).
o €A

3.26 Let g = Ax €D . U {o (x)}.
o
€A
The function g is continuous by lemma (3.14);

3.27 Hence g € Dk+1’ but g = y for any o € A: i.e., g is an upper bound

for the set S. Hence

3.28 g= U {¢u} (which is least upper bound).
a€A

Then clearly

3.29 g(x) = (U {¢ N(x) for any x € D, .
ach © k
Or, by the definition (3.26):

3.30 U {o (x)}= (U {p_ P (x) for any x € D, .
o o k
0€A €A
But the reverse inequality (3.25) implies:
3.3 U {p ()} = (U {p_})(x) for any x € D, . That 1is
o) o k
€A €A

3.32 F = g.
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Now we can continue proving (3.19). By lemma (3.11.8)

3.33 (£ nUx)) (%)

it

f(x) N (UX)(x) for any x E'Dk,

by (3.18)

f(x) N (U {wa})(X)
a€A
Then by 3.31)

f(x) NCU {wa(x)})
Q€A

and then by the distributivity of D

> (3.21) and (3.17),

= U {f&x N @a(x)} <= U (h(x)) = h(x)
0€A O.€A

Therefore, from (3.33) we conclude that

3.34 £ nUX) < h,

proving (3.19). And since (3.20) was proven before, we can conclude that

3.35 UX = (f=>h) ¢ Dy

And since f and h are any elements of Dk+l’ this proves that Dk+l is r.p.c.
lattice: q.e.d.

This completes the inductive argument and proves the theorem.

Let us prove the converse of theorem (3.16).
3.36 Theorem

Let Dn be r.p.c. lattice for some n > 1. Then Dk is r.p.c.
lattice for any k = n.

Proof: It is enough to prove that if D is r.p.c., so is D, for any

k+1 k

k < n. So we assume that D

o+l is a r.p.c. lattice. Let x and y be

any two elements of’Dk, and let (Qk’wk) be a projection pair as in (1.9).

Hence, @k(x) and,ék(y) are in Dk+l’ which is r.p.c.
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3.37 Denote C = (@k(x) => ®k(y)) €D, 1»

then

3.38 wk(C) = Wk(ék(x) => @k(y)) €D,.

By the definition of relative pseudo-complements,

3.39 @k(x) Nt < @k(y) iff £ < C for any t €D, ;.

3.40 let xNd=<y in Dk’ then, since @n is a distributive continuous

projection (lemma (1.9)), it follows, by lemma (3.11.12) that
3.41 ‘ék(x) ﬂ@k(d) < @k(y). Then applying (3.39) we deduce

3.42 ®k(d) = C.

Thus, in particular by (1.7), (1.9),

3.43 Yoo (d) =¥ (C)
or

3.44 d = vk(c).

3.45 This proves that if x N d <=y, then d = Wk(C).
On the other hand,

3.46 1f d =Y, (0, then by (1.9)

3.47 @k(d) < @kO?k(C) = C.
Therefore, by (3.39)

3.48 @k(x) n @k(d) = @k(y).

Consequently, by lemma (3.11.12), we have

3.49 Wk(@k(x) N @k(d)) < Wk°¢k(y) and thus, by lemma (3.11.12) and (1.7),
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3.50 xNd=y.
We conclude from (3.45), (3.46), (3.50) that

3.51 xNd=<yiff d = Wk(c).

This proves that there exists (x => y) in Dk and that
3.52 (x=>y) = Wk(¢k(x) = @k(y))-
Since x and y are arbitrary elements of Dk’ (3.52) proves that

Dk is a r.p.c. lattice, and this concludes the proof of the theorem.

3.53 Corollary.

If there exists n such that Dn is r.p.c., then D, is r.p.c. also.

0

Proof: Immediately proved by 3.36.

3.54 Definition.

For m =z n define VY which is a mapping from D_ onto D_.
m, o m n

(i) ¥ is an identity function on D .
,0 n

(11) Y o...0Y

Yotk+1,n ~ 'n nk-1"Y,

‘n+k’

3.55 Definition.

Assume that D0 is a complete r.p.c. lattice. Let

oo}

o
x €D and y €D_: that is, x = <X > -0 and y = Y ”n=0"
One can define a binary operation "=>" such that
s.¢]

(x = y) = z where z = <z_> o and

(o]

(1) zg = kQl{(x0 => yo),\yl,o(xl => Y1)=""Tk,o(xk => yk),...L

(o]

(11) n T A {(Xn = yn)’\yn+l,n(xn+l = yn+l)""’qln+k,n(xn+k = yn+-k)""}’

k=0
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where (xm => ym) in (i) and (ii) is a pseudo-complement of X relative
to Yo in the lattice Dm. This pseudo-complement is well defined for any

m, since we assume that D, is a r.p.c. lattice and therefore Dm is

0
a r.p.c. lattice for any m by theorem (3.16). Also, z_ is well

defined since each Dn is a complete lattice.

3.56 Lemma.
2 .
=> : Doc - Doo , L.e., if x,y € Dm, then

(x=>vy) =z ¢ D also.

Proof: By definitiom, z = <zn>°°= is an element of D_ iff

(i) for any m, z € Dm

).

(ii) for any m, z = Wm(zm+1
(1) follows easily from the definitions (3.54) and (3.55), and from the fact

that Dm is a complete lattice for any m = 0. To prove (ii), the

following inequality is needed:

3.57 yn 2 0 lyn(xn-lb-l = yn+1):5 RS

which is easily verified as follows:

From the consistency condition for coordinates in D :
3.57.1 X n Tn(xn+1=$>yn+l) = wn(xn+l) N Wn(xn+l = yn+l)

by lemma (3.11.12)

=¥ (

n Xn+l

nix )).

n+1 -7

n+l
3.57.2 [We have a N(a=>b) = a1 b in any r.p.c. lattice [H. Rasiowa and
R. Sikorski (1970:60)]

Hence, by (3.11.12),
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= Wn(xn+l n yn+l) = wn(xn+l) n Wn(yn+l)
=x N Y, =Y,
_SO *n n Wn(xn+l = yn+l) = In

Then by lemma (3.3)

Wn(xn+l => yn+l) =x =Y., i.e., (3.57).
By the definition of z in (3.55), we have
0
3.58 Ym(zm+1) =Y kQO{(xm+l = ym+l)’”"’wm+k,m+l(xm+k = ym+k),...}.
. =)
Even though we have [ , there is only a finite number of elements
i k=0
in Dm+l (since D0 is finite). Therefore, lemma (3.11.12) can be applied:
[es]
= J = . ° =
kgo{vm(xm+l > Y ) Yy Wm+k,m+l(xm+k > ym+k),...}.

Using inequality (3.57) we assure that adding a new, greater

term does not alter the value of the infimum:

[s o]

= D {(xm

k=0 => ym)a \PTTI(XII'H'l => Ym+l),--',‘ \Pm-l-k,m(xm-i'-k => Ym+k),---},

by the definition (3.55)

= z . That is,
m

3.59 Wm(zm+l) =z which concludes the proof of (ii).

This completes the proof that (x => y) = z ¢ D _ for any x and y
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3.60 Theorem.

Let D0 be a finite relatively pseudo-complemented lattice and
"—" be a binary operation defined in (3.55). Then D is a complete
relatively pseudo-complemented lattice with operation of the relative
pseudo-complementation given by the "=".

Proof:

(o] co
= <x > = <y > .
Let x X > 20 and y Y. >n=0 be in D _. By the definition

of projection and lemma (3.11.12),

3.60.1 (x N(x=> y))n = x n (x= Y)n

by the definition (3.55) of =>

xnrlgo{(xn = yn)""’\Pn+-k,n(yn+k = yn+k)""} =

and, using the inequality (3.57), and by (3.57.2), we obtain
=x N (x = y) =x Ny =y for any n= 0.

So from the definition of the ordering relation in D it follows that
3.60.2 xN (x=>y) =vy.

3.60.3 Let z € D_and x 1z =Y.

We would like to show that, in this case,

3.60.4 z < (x="y), i.e., for any n = 0, z = (x = y)n.
We will prove this by induction on n:
(i) n = 0 : Since X n 2, =y for any k > 0O by assumption (3.60.3).

Then, by the definition for r.p.c.

3.60.5 for any k = 0, z, = X, => Y in Dk

(D, is an r.p.c. lattice by the theorem (3.16)).
k
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Therefore (x =>y)0 = ﬂ{xo => ¥p» ‘Po(x1 = yl),...}

by (3.60.5)

> ﬂ{zo,wo(zl),...} =z, q.e.d.

(ii) Let, for n < m, Zn < (x = y)n. Then

>

(X => Y)'m"'l = ﬂ{(xm+1 => Ym+1); \ym+l(xm+2 == )s"']

Y2
And, by inequality (3.60.5)
),...} =z

> Nz (

k1 Vo1 P2 mHl®
This concludes the inductive argument and proves (3.60.4).

Finally, (3.60.2) and (3.60.4) are precisely the inequalities
present in the definition (3.2) of a relative pseudo-complement.
Therefore, we conclude that
(x => y) given by (3.55) is a pseudo-complement of x relative to y.
Since x and y were arbitrary in D_, by the definition (3.4), deduce
that Doo is an r.p.c. lattice. gq.e.d.

This concludes the proof of hypothesis (2.25).

The notion of the relative pseudo-complement and the proofs
related to it are not simple, as apparent in the work done above.
Can we simplify our hypothesis? Can we assume that D is a Boolean
lattice, say? The following theorem proves that it is not possible

to conceive D as a Boolean algebra.

3.61 Theorem. o
D_ cannot be constructed to be a Boolean algebra.

Proof: 1In a Boolean algebra B complementation(*) is defined and it

should satisfy the following axiom:
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%k
3.61.1 X = x for any x € B (this is a double negation axiom).
However, assume that (%) is defined in D, and satisfiles axioms

of Boolean logic (they can be found in any textbook on logic).

3.61.2 Let I =(\x €D . x€D.
oo} [oo]

*
Then, by assumption, I ¢€ Dw is well defined and satisfies the axiom

3.61.3 I*UI =T
* % *
agund) =1 dDud)=1 W
by (3.61.3)
=T =T.

3.61.4 i.e., T () =T.

*
On the other hand, I should satisfy the axiom

3.61.5 101 =L.
Therefore (I*ﬂI)(17 = I*(T)DI(T)

= 1M =L1M =L by (3.61.5)

*
3.61.6 i.e., I (T) =L

(3.61.4) and (3.61.6) show that I* is not a monotonic function and thus
is not continuous in D . We conclude that I* [4 D_, which means that
the Boolean complementation in D_ is not well defined; that is, D

is not a Boolean lattice.

Before we conclude this section, we will present a few results,
describing properties of the operation "*" which is pseudo-complementation
in D_ and was defined in (3.5). Proofs are essentially based on the
theorems and lemmas presented throughout section 3 and will appear

elsewhere in our works.
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3.62 Lemma.
Let D_ be constructed as in (3.60) and "*" be an operation

of pseudo-complementation in D_. Then, for any f € D and any x € D_

f**(x) > (f(x))**, where f** = (f*)* €D_.

3.63 Corollary.

%%
g = AMx. (£(x)) is a continuous function: 1i.e., g € D_.

3.64 Lemma.
*

© *
For any n = 0 if x € Dn and x = x, then x € Dg.

3.65 Theorem.

. %
If DO is a Boolean lattice, then mapping ¢: x}——s’x

co
.

is a lattice-homomorphism of D_ onto D0

Note: This theorem assures us that maximal Boolean subalgebra of D_ is

contained in D;. For the reader familiar with lattice theory, theorem

(3.65) will resemble Glivenko's theorem (see Birkhoff (1960:148)).
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4, A-LOGIC

In formalized theories it is a tradition to describe first
their language, sct of logical axioms and rules of inference. Only
after thié description is the notion of structure or semantics introduced.
Structure (for definition, see any modern textbook on mathematical logic)
is usually used for the formulation of nonlogical axioms. We then
require that all the theorems of a formalized theory be valid
statements about the structure. The existence of a model proves the
consistency of the theory. The universe of a structure is postulated
to be some nonempty set. Recent developments in the categorical analysis
of logic show that this postulate carries its own logical calculus --
namely, classical Boolean logic. That is why for the longest time

Boolean logical calculus was considered to be the correct logic.

Development of the Topoi theory clearly demonstrated that there is no
one correct logic, just as there is no one correct geometry. Thus, the
choice of logical axioms depends on the choice of a structure. If we
choose a universe from a category that differs from the category Set ,

we will conceive a nonclassical "logic" which differs from Boolean logic.

Since our purpose is to find an appropriate logic for

A-calculus, and not to impose some kind of logic onto it, we inevitably
digress from the tradition mentioned above. "Model," not "language,"

is our starting point.

A. Structure for A-logic.

4.1 Definition.

Let D= {1,t,£.T}: That is. the 4-valued lattice:
T.
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Then define D_ as in (1.8), based on D0 = D. Ordering in D_ is denoted =.

This particular D_ was suggested by Dana Scott (1973). The
reason for such a choice of D0 is dictated by the necessity of introducing
a continuous conditional, or choice operation. In fact, if we didn't

require the conditional to be continuous, our choice would be DO = U;T}:

i.e., the simplest nontrivial Boolean lattice.

4,2 Definition.
The model of A~logic is the lattice D_ of (4.1). By theorem

(3.60) D is a complete relatively pseudo-complemented lattice.

B. The Language of A-logic.

The language of our formalized theory is an extension of the
A-calculus. Since the model was already defined, it is possible to

assign interpretations [[ ]l in D_ concurrently with language definitions.

4.3 Definition.
Let p be any valuation in D_ (see definition (1.18)). Assume
denumerably many variables x,y,Z,.... The set of formulas is defined by

induction as follows:

1. Each variable 1s a formula.

If x is a variable

(A1) [xIKp)

p(x).
2. If A and B are formulas, so is AB
(A2) [BBIp) = oCIl Al(p)) ([ BI(p))

3. If A and B are formulas, then (PAB) is a formula and

(a3) [[PAB]] (p) = [ ATl (p) = [ BI (p).
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4, If A is a formula, then so is (NA), and

(A4) [[NAIl (p) = MAll(p) =1, where L is the smallest element in D_.
5. If A and B are formulas, then so are (vAB) and (AAB), where
interpretations are given by

(a5) [ vaB]lp)

TADl() UMBIGM;

(46) [ AaBIIp) = [ATI(e) N [BII(p).

6. If A, B, C are formulas, then Cond(ABC) is a formula with interpretation
4

UBI(p) if t = MAIl(p) and £ £ [AII(p)

A

A

Mch(p) if t £ [ATI(p) and £ = [[ATI(p)
MAl(p).

(A7) [[ cond(ABO) Tl (p) = <

A
IA

[VBCI(g) if t < [ ATlI(p) and £

1 otherwise.

\_
This definition of the conditionmal is Scott's (1973).
Note: We will abbreviate (2), (4), (5), (6) as

(i) PAB = A=B

(ii) NA = ~A
(iii) VAB = AvVB
(iv) AAB = AAB

(v) Cond (A,B,C) = (A > B,0).

7. If A and B are formulas, so is (QAB).

t if [AN(e) = [ BI(p);
(A8) [[QaB] (p) =
f otherwise.
8. If x is a variable and A is a formula, then the abstraction (Ax.A)
is a formula iff it has the interpretation [[ Ax.A JI(p) for any p, that is
A9 [ Ax.AT = ¥(Ad € D_. [T AN (p(d/x))),
where p(d/x) is defined in (1.18) . Note (A9) is well defined iff
Ad € Dm.[[A]](D(d/x)) is a continuous function on D_, e.g.., Ax.Nx is

not a formula by this definition.
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9., L and R are formulas, and

(1) TL(p) =t € D;
(i11) TRJG) = £ € D_.

10. T and F are formulas, and
(1) NTN() =T: maximal element in D_;

(ii) [ F1(p) =L : minimal element in D_.

11. If A and B are formulas, then A = B is a formula

T if TAl(G) = [BI(P,
[A=3Bl()=
otherwise.

If parentheses are absent, we assume application of formulas from the

left to the right. The scope of Ax is defined similarly to (1.1).

4.4 Definition.

A variable x's occurrence is free in a formula A if x is not in
the scope of Ax; otherwise x is bound in A. FV(A) 1s the set of all free
variables in A. A is closed if FV(A) = ¢. If A and B are formulas,

then [A/x]B is defined as in (1.1).

4.5 Observation.

All )-terms are formulas.

. ‘~ms and rules of inference.

4.6 Definivc.
Let A be an, 1a of A-logic. ‘Then we say that A is valid
iff TAN(p) =T for any valuac. 1f formula A is valid, we denote it

I A. We abbreviate if}Al?&...FAn then f.. Aq,...,AnFX-
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4.7 Equational axioms:

let A, B and C be formulas. Then

4.7.1F A=A

L A=3B
4,7.2 Fj};j;—x
FA=B,LB=cC
4.7.3 TG
4.7 - A= B for all contexts C[ ]
*ToRC[A] = C[B] )

4.7.5 (a) Ax.A = Ay.l[y/x]A, provided Xx.A is a formula.
(B) (Mx.A)B = [B/x]A if ()x.A) and B are formulas.

(n) Ax.Ax = A provided (Xx.Ax) is a formulaand x £ FV(A).

4.7.6 Let A be a A-term, then

A does not have head normal form
FA=F

(This postulates the equality of all unsolvable terms. See Wadsworth.)

4.8 (i) Fr (iii) FAx.F=F (v) - ~T=F

for any formula A
(ii) FAx.T = T (iv) FT(a) = T (vi)|-F(A)

It

F

4.9 Rule Eq. X =Y &} X, then |- Y, where X and Y are formulas.
4,10 Modus ponens. X and Y are formulas, then X => Y, X F Y.

4.11 Intuitionistic propositional axioms.

1. F((a=B) = (B= C) = (A= 0))),
2. Fa= (avB)),
3. (3= (AvB)),

4, F((A=>C) = ((B= C) = ((AvB) = C))),
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5. |-((aAB) = A),

6. ((AAB) = B),

7. F{(c= A) = ((C= B) = (C= (arB)))),
8. (A= (B=>C)) = ((AAB) = ()),

9. |-(((aAB) => C) = (A= (B = 0)),

10. F((An~A) = B),

11. F((A = (AA~A)) = ~A),

where A, B and C are any formulas of A-logic.

Notice that the axioms in list (4.11) are in the same form as axioms
of intuitionistic propositional logic. This replication in form is

caused by the fact that models for both theories are r.p.c. lattices.

4.12 W-rule.

Let A and B be A-terms.

A =B
F—Z—E;—E, where = 1s Wadsworth's ordering relation from (1.23).
W
4.13
(i) F LAR=F (iv) Ax.L = L (vii) R(A) = R,
(ii) F LVR =T (v) =x.R =R for any formula A.
(iii) | ~L = R and |-~R = L. (vi) L(4) = L

4,14 COND axiom.

Let A and B be formulas, then

(i) | cond(LAB)
(ii) F Cond(RAB) = B
(iii) ‘— Cond( (AAYAB) = AA, where A = Ax.xx.
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4.15

A => B,}FB = A 1iff

T
>
il
(=]

4.16 Q-axiom.

(i) A=B|-QAB =1

(ii) A# B} QAB =R

This completes the list of axioms and inference rules for the A-logic.

4,17 Theorem.

A-logic is consistent.
Proof:

We prove consistency by showing that axioms (4.7)~-(4.16) of the
A-logic are valid in D_, i.e., D_is a model of axioms (4.7) - (4.16) .
Validity of (4.2.1) - (4.7.5) is proved in a way similar to that of theorem
(1.20) (see Wadsworth 1976:495). Axiom (4.7.6) is valid (see Wadsworth
1976:514).

(4.8) and (4.9) are clearly valid by the definition of T
and by (4.3.11). Validity of modus ponens follows from:
Let F X=> Yand X: i.e., [X]] < [YI and [X]] =T, then

Yl =T , q.e.d.

Axioms in the list (4.11) are valid since D_ is a complete
relatively pseudo-complemented lattice (by theorem (3.60)). Then using
interpretations (A3), (A4), (A5), (A6) we can easily translate (4.11D)
into a list of true statements about elements of any Heyting algebra

(see Rasiowa and Sikorski 1970).
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Validity of (4.12) follows from the theorem (1.24).

(4.13) 1is proved by showing that t and f are disjoint Boolean
elements of D_. Proof is done by induction en the structure of elements
in D_ and 1s not a difficult exercise for the reader.

Validity of (4.14) follows immediately from (A7). And (4.16)

follows from (A8). q.e.d.

The language of A-logic can be easily extended in order to
adjoin existential and universal quantifiers g and X. Then we can
interpret the quantifiers as infinite join and meet operations in D_,
in a manner similar to that of interpreting 3 and VYV in intuitionistic
predicate calculus (Rasiowa and Sikorksi 1970). This extension will
significantly increase the expressive power of A-logic. Since D_ is
a complete lattice, infinite joins and meets always exist.

It is worth it to note that Scott's conditional (A7) can be
abstracted: i.e., Az . (z D x,y) is a continuous function in D_ .

This property makes Cond very useful for programming.

CONCLUSION.

N. Bourbaki once said that proofs had to exist before the
structure of a proof could be logically analyzed. We hope that our
A-logic is a natural foundation for a large body of writings, known as
"fixed point proofs." Since the size of this paper much exceeded the
length we had planned on originally, possible applications are not
covered here. iIt might be useful to express so-called Proof Principles

(e.g., Scott's Induction Principle) as theorems of A-logic (extended by
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quantifiers). Such an exercise does not seem to be difficult, and it
can clarify the matter. Maybe it will bring new and useful verification
techniques to the fore.

Our approach reflects the view that each language carries its
own logic. If so, proof methods should also depend on a programming
language (its semantics). This means that so-called ''principles' should
vary depending on the language. Extending A-calculi by various &8-rules,
and using methods similar to ours, one might detect the logic of this
new language.

Another interesting question is, do we know all about the
algebraic structure of D ? TIs it just an r.p.c. lattice, or may Dm
be a quasi-r.p.c. lattice, which is a model for a system stronger than IL
called "constructive logic." Of course, theorem (3.61) shows that the
strength of Boolean logic cannot possibly be accessible if one needs
higher-order functionals and self-application. But theorem (3.61) does
not mean that the relatively weak IL-like A-logic cannot be improved

(e.g., be made into constructive logic).
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