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Overview
What is an SVM?
- optimal hyperplane and soft-margin for inseparable data
« handling non-linear rules and non-standard data using kernels

How to use SVMs effectively and efficiently?
How to train SVMs?

« decomposition algorithms / primal vs. dual / shrinking
Why can SVMs learn?

« worst-case / average-case / relation to cross-validation

When do SVMs work well?
- properties of classification tasks - a case study in text classification
SVM-{ranking, novelty detection, regression, ...}?

- ranking e.g. learning retrieval functions
« novelty detection: e.g. topic detection




What I will not (really) talk about...

« SVMs 1n the transductive setting
[ Vapnik, 1998][Joachims, 1999c][Bennet & Demiriz, 1999]

« Kernel Principal Component Analysis
[Schoelkopf et al., 1998]

- connection to related methods (1.e. Gaussian Process Classifiers,
Ridge Regression, Logistic Regression, Boosting)
[Cristianini & Shawe-Tylor, 2000][MacKay, 1997][Schoelkopf &
Smola, 2002]

Warning: At some points throughout this tutorial, precision is
sacrificed for better intuition (e.g. uniform convergence bounds for
SVMs).




YES

Text Classification

E.D. And F. MAN TO BUY INTO HONG KONG
FIRM

The U.K. Based commodity house E.D. And F. Man
Ltd and Singapore’s Yeo Hiap Seng Ltd jointly
announced that Man will buy a substantial stake in
Yeo’s 71.1 pct held unit, Yeo Hiap Seng Enterprises
Ltd. Man will develop the locally listed soft drinks
manufacturer into a securities and commodities

brokerage arm and will rename the firm Man Pacific
(Holdings) Ltd.

About a corportate acquisition?

NO




Learning Text Classifiers

Real-World
o Process
Training Set

~ = / \}\Iew Documents\

Classifier .
Learner —
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Goal:

- Learner uses training set to find classifier with low prediction error.




Representing Text as Attribute Vectors

From: xxx@sciences.sdsu.edu

Newsgroups: compW

Subject: Need specs on Apple QT

I need to get the specs, or at least a
very verbose interpretation of the specs,
for QuickTime. Technical articl

erences to books would

magazines an
be nice, too.

| also need the specs in a fromat usable
on a Unix.or MS-Dos system. | can't

do much with the Quickw
have on ...

|
//
=
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baseball
specs
graphics
references
hockey
car

clinton

unix
space
quicktime
computer

==> The ordering of words is 1gnored!

Attributes: Words
(Word-Stems)

Values: Occurrence-
Frequencies




Paradoxon of Text Classification

-

-

30,000
Attributes

—

... but this 1s not necessarily a problem!

4 h
10,000
Training Examples
- _/

Good News: SVMs can overcome this problem!

Bad News: This does not hold for all high-dimensional problems!




Experimental Results

Reuters Newswire WebKB Collection

Ohsumed MeSH

« 90 categories « 4 categories « 20 categories

« 9603 training doc. « 4183 training doc. « 10000 training doc.

« 3299 test doc. . 226 test doc. « 10000 test doc.

« ~27000 features « ~38000 features « ~38000 features
sleronteragl prceion el Reers | WeKB  Obsumed
Naive Bayes 72.3 82.0 62.4
Rocchio Algorithm 79.9 74.1 61.5
C4.5 Decision Tree 79.4 79.1 56.7
k-Nearest Neighbors 82.6 80.5 63.4
SVM 87.5 90.3 71.6

Table from [Joachims, 2002]




Part 1 (a): What is an SVM? (linear)

-prediction error vs. training error
.learning by empirical risk minimization
«VC-Dimension and learnability
-linear classification rules
-optimal hyperplane
-soft-margin separation




Generative vs. Discriminative Training

Process:

- Generator: Generates descriptions % according to distribution P(%).
- Teacher: Assigns a value y to each description x based on P(y|%).

=>Training examples (%1,y,), ..., (Xu »,) ~ P(%,»)

e RY yie {L,-1}

/

\

Generative Training

- make assumptions about the
parametric form of P(%, y).

- estimate the parameters of
P(%,y) from the training data

- derive optimal classifier using
Bayes’ rule

- example: naive Bayes

Discriminative Training

- make assumptions about the
set H of classifiers

. estimate error of classifiers in
H from the training data

. select classifier with lowest
error rate

- example: SVM, decision tree




True (Prediction) Error

What is a “good” classification rule 7?

P(h()#y) = [A(hZ) #»)dP(R,y) = Errp(h)
Loss function A:

« 1 if not equal
« 0 1f equal

What is the “optimal” Learner L?

Finds the classification rule 4,,, € H for which Errp(h) 1s minimal:

hopt = argminy, _ y{Errp(h)}

Problem:

P(%,y) unknown. Known are training examples (31,,), ..., Zm»,)-




Principle: Empirical Risk Minimization (ERM)
Learning Principle:
Find the decision rule #° € H for which the training error 1s minimal:
he = argmin, _ y{ Erry(h)}

Training Error:

n

Errg(h) = 3 AQy; 2 h(hi)
i=1

==> Number of misclassifications on training examples.

Central Problem of Statistical Learning Theory:

When does a low training error lead to a low generalization error?

11




When is it Possible to Learn?

Definition [Consistency]: ERM is consistent for
- a hypothesis space H and

- iIndependent of the distribution P(?c, V)

if and only 1f the sequence

lim Errp(h®) = inf;, _ yErrp(h)

n— oo

lim Erry(h°) = inf, _ gErrp(h)

n—

converges in probability.

<==> one-sided uniform convergence [ Vapnik]

lim P{sup, _ {Errp(h)—Errgh))>€} = 0

n— o

<==> VC(C-dimension of H 1s finite [ Vapnik].




Vapnik/Chervonenkis Dimension

Definition: The VC-dimension of H 1s equal to the maximal number d

of examples that can be split into two sets in all 24 ways using
functions from A (shattering).

X1 Xy X3 Xd
h; + + + +
h, - + + +
h; + + +
hy + +




Linear Classifiers

Rules of the Form: weight vector w, threshold »

N N
h(x) = Sigi{z ?vl-?ci+b} _ )1 ifz Wiki+b>0
- B T ke
Geometric Interpretation (Hyperplane):
A
+ T
+ 4+ .- =T
b o




Linear Classifiers (Example)

Text Classification: Physics (+1) versus Receipes (-1)

. nuclear atom salt pepper water heat and y
(x1) (x2) (x3) (xg) (x3) (xg) (x7)
D1 1 2 0 0 2 0 2 +1
D2 0 0 0 3 0 1 1 -1
D3 0 2 1 0 0 0 3 +1
D4 0 0 1 1 1 1 1 -1
w,b 2 3 1 3 1 1 0 b=1
/
DI: ¥ Wk b =[2-1+3-24(=1)-0+(=3)-0+(=1)-2+(=1)-0+0-2]+1
i=/ 1
D2: y Wik b =[2-0+3-0+(=1)-0+(=3)-3+(=1)-0+(=1)-1+0-1]+1




VC-Dimension of Hyperplanes in ‘R*

. Three points in %” can be shattered with hyperplanes.

—> Hyperplanes in ®° -> VCdim=3

General: Hyperplanes in %" -> VCdim=N+1

O e \o o
O O ® O O O ®
®




Rate of Convergence

Question: After n training examples, how close 1s the training error to

the true error?

With probablility n 1t hold for all # € H:

Errp(h)—Erry(h) > ®(d, n,n)

d(lnz—n - 1) —1n0
1 4 d 4

(D(d, n) - 5 n

« N number of training examples
«d VC-dimension of hypothesis space H

—— EFVP(h)SEVrS(h)+q)(d>n7 Tl)




SVM Motivation: Structural Risk Minimization

Errp(h;) < Errg(h;) + ®(VCdim(H),n, 1)

Idea: Structure on
hypothesis space.

Goal: Minimize upper bound on
true error rate.

A

Errp(hl.)
O(VCdim(H),n, n)

EW,S(hi)

opt VCdim(H)




Optimal Hyperplane (SVM Type 1)

Assumption: The training examples are linearly separable.




VC-Dimension of “thick” Hyperplanes

Lemma: The VCdim of hyperplanes (w, by with margin & and
description vectors ||%|| < R is bounded by

2
VCdim < — +1

The VC-dimension does not necessarily depend on the number of
attributes or the number of parameters!

20




Maximizing the Margin

The hyperplane with maximum margin
<~ (roughly, see later) ~>
The hypothesis space with minimal VC-dimension according to SRM

Support Vectors: Examples with minimal distance.

21




Computing the Optimal Hyperplane

Training Examples: (},,y,), ..., Gny,) %e®R yie {L-1

Requirement 1: Zero training error!

(y=-1)=[W-%+b]<0

(y=1)=[W-%;+b]>0

Requirement 2: Maximum margin!

1 S >

[W-Xx;+ b]
EN
NW - W

=> Requirement 1 & Requirement 2:

1

> >
wew

maximize o, with & = min;

maximize o, with Vi e [1 ...n][yi(

=]

[W-%;+b

X +b]>0

Distance o of point x
from hyperplane
<w,b>:

1

> >
W-w

o =

[%-?ﬁb]‘

22




Primal Optimization Problem

1

maximize o, with Vi e [1 ...n][yi( [W- X, + b]) > 6}

> >
Wew
Set ; =35
9
w-w . - : 1 > > 1
=> maximize , With Vi e [1 ...n][y-( [W-X; + b]) > }
W W NG W -

Cancel:

—> maximize , With Vi e [1...n][y,[W - X;+b] 2 1]

I
W W

Minimize inverse and take square:

W - w, with

N

=> minimize P(it, b) =

23




Example: Optimal Hyperplane vs. Perceptron

Perceptron with eta=0.1
30

"perceptron_iter_trainerror.dat" ——

N
ol
T

hard_margin_svm_testerror.dat ------- -

N
o
T

Percent Training/Testing Errors
|_\
ol

Iterations

Train on 1000 pos / 1000 neg examples for “acq” (Reuters-21578).

24




Non-Separable Training Samples

« For some training samples there 1s no separating hyperplane!
« Complete separation 1s suboptimal for many training samples!

=> minimize trade-off between margin and training error.

25




Soft-Margin Separation

Idea: Maximize margin and minimize training error simultanously.

Hard Margin:

minimize P(, b) =

Soft Margin:

. . . >
W W minimize P(, b, £) =% ?v+CZ§

S.t. y,[W-x;+b]>1-&, andaizo

Hard Margin

(separable)
-

Soft Margin
(training error)
L

26




Controlling Soft-Margin Separation

Soft Margin: minimize P(w, b, £ % W+ C Z 3
i=1
S.t. y[w-x;+b]>1-& and &.>0

* }'&; 1s an upper bound on the number of training errors.

« C 1s a parameter that controls trade-off between margin and error.

Large C
- + ¢, +

Small C 5
e

27




Example Reuters “acq”: Varying C

4

"svm_trainerror.dat" ——

Percent Training/Testing Errors
N

hard-margin SVM |
0.1 1 10
C

Observation: Typically no local optima, but not necessarily...

28




Part 1 (b): What is an SVM? (non-linear)

-quadratic programs and duality
-properties of the dual
-non-linear classification rules
-kernels and their properties
-kernels for vectorial data
-kernels for non-vectorial data

29




Quadratic Program

n n
£33 X

i=1i=1 n

minimize P(b) = [Z k.wJ

i=1

s.t. Zwlgl <

n=1

th(l) =0

i =1

ir 1

i=1

(k) .

Zwlgl <
th(m) =0

- k linear inequality constraints
- m linear equality constraints

- Hessian H = H, ; 1s pos. semi-definite
=> convex, no local optima

. 0 iS feasible, 1f 1t fulfills constraints

.o ZZOLOLH > ()

i=1i=1

30




Fermat Theorem

Given an unconstrained optimization problem

minimize P(b)

with P(#) convex and differentiable, a necessary and sufficient
conditions for a point w° to be an optimum is that

SP(W°)

Sw

=0

31




Lagrange Function

Given an optimization problem

minimize P(b)
s.t. g,(W)<0 g, (W) <0

h(W) =0 h (W) =0

the Lagrangian function is defined as

k m
LG a )= P+ S ag,(9)+ Y B ()

i=1 i=1

. o and fS are called Lagrange Multipliers

32




Lagrange Theorem

Given an optimization problem

minimize P(b)
s.t. h,(0) =0 h (W) =0

with P(3) convex and differentiable and all h affine (w*x+b),
necessary and sufﬁ01ent conditions for a point %° to be an optimum are
the existence of BO such that
>0 Bo "
LG, B) _ SLWLB) — g L@ Py =P@)+ 3 Bh, ()
5w 56 l

i=1

=> L(W°, fs) < L(w°, E") <L(w, E")

33




Karush-Kuhn-Tucker Theorem

Given an optimization problem

minimize P(w)
s.t. g,(iw)<0 g, (W) <0
h(w) =0 h (W) =0

with P(#) convex and differentiable and all g and h affine, necessary
and sufﬁ01ent COIldlthIlS for a point w° to be an optimum are the
existence of o.° and [30 such that
N
SL(W oc B ) _ oL(W°, a°, B°) _ 0
5w gfg

g (W) = 0,i = 1,...,k
g (W°)<0,i =1,...,k
a°>0,i=1,..,k

Sufficient for convex QP: maxE R [min»L(?v, gc, f%)]
o> w

34




Dual Optimization Problem

n
Primal OP: minimize P(, b, %) = %% W+ CZ g;

i=1
S.t. y[w-x;+b]21-& and &.>0

Lemma: The solution w° can always be written as a linear combination
n

20 _ >

of the training data’ ™'

n n n
. .. - B |
Dual OP: maximize D(a) = {Z oci] -3 DN ooy p(x;-x)
n i=1 i=1i=1
S.t. Z ay; =0 and 0<a,<C

i=1

==> positive semi-definite quadratic program

35




Primal <=> Dual

Theorem: The primal OP and the dual OP have the same solution.
Given the solution o.° of the dual OP,

n
S0 > 1,5 spos > sneg
we = E oYX b = S0k X +wo - )

i=1

is the solution of the primal OP.
Theorem: For any set of feasible points P(i, b) > D(gc).

=> two alternative ways to represent the learning result
. weight vector and threshold (i, b)
- vector of “influences” a;, ..., @

n

36




Properties of the Soft-Margin Dual OP

Dual OP: maximize D(gc) = {
i=1

n
S. t. ZFMQZO und
i=1

i=17

n n n
2 ai] EPIPR TR

=1

O£%£C

- typically single solution (i. €. (w, by is unique)

- one factor o, for each training example

. “influence” of single training example
limited by C

« 0<a,<C<=>SVwithg =0
e o, = C<=>SVwith& >0
- a; = 0 else

- based exclusively on inner product
between training examples

37




Non-Linear Problems

Problem:

- some tasks have non-linear structure

- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?

38




Extending the Hypothesis Space

Idea: Input Space
-7 () T~

Feature Space

==> Find hyperplane in feature space!

Example: al bl ¢

al| b| claa|ab|ac|bb|bc|cc

==> The separating hyperplane in features space 1s a degree two
polynomial in input space.

39




Example

p Sp ( b

X
| Xo 2 |
i
- , .
\ , -|_ .
| _|_ P .
\ , ///
\ ) + -
\ / / )
\ —+ 4 /
\ + II . ///
\ / -|_ /// B
\ ; ) )
\\ // . //
\\ i} // —_—

40




Kernels

Problem: Very many Parameters! Polynomials of degree p over N
attributes in input space lead to O(N”) attributes in feature space!

Solution: [Boser et al., 1992] The dual OP need only inner products =>
Kernel Functions

K(Xpx) = ©(%;) - D(%))

Example: For @(%) = (xf, x%, J2x,, A2x2, N2x1x,, 1) calculating
KGik) = 33+ 117 = o) - o(%))

gives inner product in feature space.

We do not need to represent the feature space explicitly!

4




SVM with Kernels

n
« e o > 1 > >
Training: maximize D(a) = [Z oclJ -3 Z Z o 0uy K (%5, X))
i=1 i=1i=1

n
S. t. Zociyl.=0 und 0<a,<C

i=1

Classification: For new example x 4(x) = Sign[ > oy K(;%) + bj
X; € SV

New hypotheses spaces through new Kernels:
Linear: K(%,%) = %;- %,
Polynomial: K(%,%;) = [%;-%;+ 1

Radial Basis Functions: K(%.,%,) = exp(—|?cl-—?cj|2/02)

Sigmoid: K(%.%;) = tanh(y(X; —%;) +¢)

4




Example: SVM with Polynomial of Degree 2

2
Kernel: K(%.%) = [%;-%+ 1]

plot by Bell SVM applet

43




Example: SVM with RBF-Kernel

2,2
Kernel: K .?C l',)% ) = exp(— )96 i .?C | /o plot by Bell SVM applet
J p J

44




What is a Valid Kernel?

Mercer’s Theorem (see [Cristianini & Shawe-Taylor, 2000])

Theorem [Saitoh]: Let X be a finite input space of n points (%i,..., X.).

A function K(%,,%,) is a valid kernel in X iff it produces a Gram matrix

2 2
Gij = K(x,-,xj)

that 1s symmetric

and positive semi-definite

n n
> | >T>
Va |aGo = Z Z ocl.och(?cl-,?cj) >0

i=1j=1

45




How to Construct Valid Kernels?

Theorem: Let &, and K, be valid Kernels over Xx X, XcR", a>0,
0<A<1, fareal-valued function on X, ¢;X > R” with K, a kernel over

R" x R, and K a summetric positive semi-definite matrix. Then the
following functions are valid Kernels

K(%,2) = MK, (%, 2) + (1 = M)K, (%, 2)
K(%,2) = aK (%, %)
K(%,2) = K,(%,2)K,(%, 2)
K(%,2) = )
K(%,2) = K3(6(%), 9(2))

=> Construct complex Kernels from simple Kernels.

46




Kernels for Non-Vectorial Data

Kernels for Sequences: Two sequences are similar, 1f the have many
common and consecutive subsequences.

Example [Lodhi et al., 2002]: For 0 <1 <1 consider the following
features space

c-a c-t a-t b-a b-t c-r a-r b-r
d(cat) A’ A A’ 0 0 0 0 0
d(car) A\’ 0 0 0 0 AN 0
o(bat) 0 0 A’ S 0 0
o(bar) 0 0 0 A’ 0 0 AN

=> K(car, cat) = A", efficient computation via dynamic programming.
Y y prog g

=> Fisher Kernels [Jaakkola & Haussler, 1998]

47




Computing String Kernel (I)

Definitions:

. =": sequences of length n over alphabet =
. i= (iy, ..., 1 ) : Index sequence (sorted)

o s(>i): substring operator

. 1(7) = i —i, +1:range of index sequence

Kernel: Average range of common subsequences of length n

Ksn=S %

I’l>. >. >. >.
ueX iu=s(i)ju=s@)

—ip—j; 2

Auxiliary Function: Average range to end of sequence of common
subsequences of length n

K/sn=3 3 %

> > >
uex iu= s(i)ju=s5())

|s| + 1 —i; —j, +2

48




Computing String Kernel (II)

Kernel:
K, (s,t) =0 if(min(s,t)<n)
K (sx0) = K (5,00 K\ (s, ([1..7—1]A°
Jit;=x
Auxiliary:
K'g(s, 1) = 1

K' (s,t) =0 if(min(s,t)<d)

Kyl 1) = WK (s, 0 3 Kgy(s 01— 1A

it =X
.]’]

49




Other Kernels for Complex Data

General information on Kernels:

« Introduction to Kernels [Cristianini & Shawe-Taylor, 2000]
« All the details on Kernels + Background [Schoelkopf & Smola, 2002]

Kernels for specific structures:

- Diffusion Kernels for graphs [Kondor & Lafferty, 2002]
« Kernels for grammars [Collins & Duftfy, 2002]

- Kernels for trees, lists, etc. [Gaertner et al., 2002]

50




Two Reasons for Using a Kernel

(1) Turn a linear learner into a non-linear learner

(e.g. RBF, polynomial, sigmoid)

(2) Make non-vectorial data accessible to learner

(e.g. string kernels for sequences)

51




Summary
What is an SVM?

Given:

- Training examples (31, y)). ..., @ny,) e R yie {L-1

- Hypothesis space according to kernel K(%,.%;)

« Parameter C for trading-off training error and margin size
Training:

« Finds hyperplane in feature space generated by kernel.

« The hyperplane has maximum margin in feature space with minimal
training error (upper bound Zgi) given C.

« The result of training are a, ..., a,. They determine (W, b).

Classification: For new example (%) = sign > oy K(%;.X) +bj

xl.eSV
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Part 2: How to use an SVM effectively and
efficiently?

-normalization of the input vectors
.selecting C
-handling unbalanced datasets
-selecting a kernel
-multi-class and multi-label classification
- selecting a training algorithm

53




Design Decisions in Working with SVMs

Setting up the learning task
-multi-class problems
-multi-label problems

Representation of the data (efficiency and effectiveness)
-selecting features
-selecting feature values
-normalizing the data (directional vs. non-directional data)
.selecting a kernel

Selecting a good value for the parameter C and Kernel parameters

Selecting a training algorithm that is efficient for the particular QP
-kernel SVM vs. linear SVM
-many sparse features vs. few dense features

54




Handling Multi-Class / Multi-Label Problems

Standard classification SVM addresses binary problems y e {1, -1}

Multi-class classification: y € {1, ..., k}
- one-against-rest decomposition into £ binary problems
. learn one binary SVM »”per class with y? = J 1 ¥ =10
e assign new example to y = argmax[h(i)(a’c)] 1 else
. pairwise decomposition into k(k— 1) binary problems
. learn one binary SVM »per class pair y\* = J 1 #y=10)
. assign new example by majority vote L=
- reducing number of classifications [Platt et al., 2000]
- multi-class SVM [Weston & Watkins, 1998]

« multi-class SVM via ranking [Crammer & Singer, 2001 ]

Multi-label classification: yc {1, ..., &}
+ learn one binary SVM 1" per class with ") = { L ifliey)

—1 else

55




Which Features to Choose?

Things to take into consideration:
- 1f features sparse, then dimensionality of space no efficiency problem
« computations based on inner product between vectors

- consider frequency distribution of features (e.g. many rare features)
o Zipf distribution of words

. see TCat-model
« SVMs can handle redundancy 1n features

 bag-of-words representation redundant for topic classification
 see TCat-model

- as few 1irrelevant features as possible

. stopword removal often helps in text classification
. see TCat-model

56




How to Assign Feature Values?

Things to take into consideration:

- importance of feature 1s monotonic 1n its absolute value
- the larger the absolute value, the more influence the feature gets
« typical problem: number of doors [0-5], price [0-100000]
- want relevant features large / irrelevant features low (e.g. IDF)

- normalization to make features equally important

« by mean and variance: x _ x—mean(X)

norm m

- normalization to bring feature vectors onto the same scale
- directional data: text classification

« by other distribution

-

. by normalizing the length of the vector %,,,, =

according to
some norm |

 changes whether a problem 1s (linearly) separable or not
- scale all vectors to a length that allows numerically stable training

=V

57




Selecting a Kernel

Things to take into consideration:

- kernel can be thought of as a similarity measure
 examples in the same class should have high kernel value
- examples in different classes should have low kernel value
- ideal kernel: equivalence relation K(%;.%)) = sign(yy;)

- normalization also applies to kernel
- relative weight for implicit features
- normalize per example for directional data

> >
K(xirxj)
> > > >
«/K(xi,xi)«/K(xj,xj)

- potential problems with lar%e numbers, for example polynomial
kernel K(%,%;) = [%;-%;+1] for large d

2 2
K(xiaxj) -

58




Selecting Regularization Parameter C
Common Method
- a reasonable starting point and/or default value 1s C dof = —
- search for C on a log-scale, for example D K

1

C e 10 *Caef, ..., 10*Cues]

« selection via cross-validation or via approximation of leave-one-out
[Jaakkola&Haussler,1999][ Vapnik&Chapelle,2000][Joachims,2000]

Note

. optimal value of C scales with the feature values

 implicit slack variables via infrequent features
- 1f every example has one unique feature x,, then always separable
- unique features x; act like squared slack variable

. . . 2>
minimize P(, b, £) = %% W+ % Y wo sty [W-3+b]21 —wx,

=1

59




Selecting Kernel Parameters

Problem

- results often very sensitive to kernel parameters (e.g. variance y in
RBF kernel)

- need to simultaneously optimize C, since optimal C typically depends
on kernel parameters

Common Method

- search for combination of parameters via exhaustive search
- selection of kernel parameters typically via cross-validation
Advanced Approach

- avoiding exhaustive search for improved search efficiency [Chapelle
et al, 2002]

60




Handling Unbalanced Datasets

Problem

- often the number of positive examples 1s much lower than the number
of negative examples

« SVM minimizes error rate
=> always say “no” gives great error rate, but poor recall

Common Methods

- cost model that makes errors on positive examples more expensive

. >
min P(hbE) = S +ICYE+CS e, Sty [ kirb]> 1-¢; and &> 0

Vi~ 1 Vi~ -1
« change threshold » after training to some higher value 5’

h(X) = Sign[ Z aiyiK(§i,§)+b,j

xl.eSV
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Selecting an SVM Training Algorithm

SVM“&ht (a]s0 SVMtorch, mySVM, BSVM, etc.) [Joachims, 1999b]
« solve dual QP to obtain hyperplane from a-coefficients

- iteratively decompose large QP into a sequence of small QPs

- handles kernels and treats linear SVM as special case

SMO [Platt, 1999]
- special case of working sets of size two

- simple analytical solution of QP subproblems

ASVM [Mangasarian & Musicant, 2000]
- restricted to linear SVMs with quadratic loss
- fast for low dimensional data

Nearest Point Algorithm [Keerthi et al., 1999]
- restricted to quadratic loss
- compute distance between convex hulls
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Part 3: How to Train SVMSs?

-efficiency of primal vs. dual
«decomposition algorithm
«working set selection
-optimality criteria
.caching
«shrinking
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How can One Train SVMs Efficiently?

Solve one of the following quadratic optimization problems:

. > ]
min P(w, b, £) iﬁ-vmczgi
i=1
S.t. y[w-x;+b]>1-& and &.>0

<=DUAL =>

n n n
> 1
max D(a) = [ Zaij -5 ZaiajyiyjK(?c,-, %)

n>i=1 i=1i=1

S. t. ZociinO and 0<o;<C

i=1

« n+ N+ 1 variables

- n linear inequality
constraints

- no direct use of kernels
o size scales O(nN)

- n variables

« 1 linear equality, 2n box
constraints

. use of kernels natural
. size scales O(n°)

=> positive semi-definite quadratic program with » variables
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Decomposition

ki kyy ki3 kg kys kg kyq| oy
ky1 kyy Koz Koy Kys Ko Kpq| |0y
kyy k3p k33 kg kss kag kyq) |0
kyy kyy kyz kag kys kyg ky7| |0y

ksy ksy ksy ksy kss ksg ks7| |

k61 k62 k63 k64 k65 k66 k67 g

k11 kg3 kg3 kg kqs kg k7] |0

|

&~

' = a8 n & »n o !
'8 83 8 8 3 3 3,

— 1
_

' m a8 o »n o !
'8 83 8 8 3 3 3,
&~

_111 111_
|

Idea: Solve small subproblems until convergence (Osuna, et al.)!
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Decomposition

Idea: Solve small subproblems until convergence (Osuna, et al.)!

1| |93 10‘3
MAx| || |0y 5|0y

kll k12 k13 k14 k15 k16 k17 oy

7
7| | %4

key ko3 Koy ko5 keg ker| |

kyy ksy kg ksy kys ksg ks
kyy kyp kg kyg kys kyg kg

k11 kg3 kg3 kg kqs kg k7] |0

Time complexity: working set of size 2 <4 <100 and f nonzero features:
. extracting subproblem: O(q°/)

. solving subproblem: 0(¢q°)
« updating large problem with result of subproblem: O(ngf)
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What Working Set to Select Next?

Solution: Select subproblem with g variables that minimizes

> > T
/(d) = g(0) d
%
y'd=0
di 20, if(a; =0)
subject to d;<0, ifgoci =(C)
-1<d<1
|{di¢0}| = q

Efficiency: Selection linear in number of examples.

Convergence: Proofs by Chi-Chen Lin / Keerthi under mild
assumptions.
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How to Tell that we Found the Optimal Solution?

Karush-Kuhn-Tucker conditions lead to the following criterion:

_ x4
maximize D(a) = {

v

n n
1 > 3
5 Z Z OLi(ijl-yj(xl- - X;)

no =l P=li=1 1s optimal
S. t. Zociyl.ZO and 0<a,<C
<=
n
(a; = 0) = y{ D oy K (i, %) + b} > 1
j=1
Vi |[(0<a;<C) :yi[ D ajyjK(%l-, X))+ b} =1
7{'= 1
(a;=C) :y{ Z ocjyjK(?cl-, ?cj) + b} <1

j=1
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Demo

The Steps of Solving a 2-d Problem.
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Caching

Observation: Most CPU-time is spent on computing the Hessian!

Idea: Cache kernel evaluations.

300

250

200

150

frequency

100 -

50

1 1 1
1 10 100 1000 10000
rank by frequency (logscale)

Result: A small cache leads to a large improvement.
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Shrinking

Idea: If we knew the set of SVs, we could solve a smaller problem!
(complexity per iteration from O(ngf) to O(sqf))

Algorithm:

- monitor the KKT-conditions in each iteration

. 1f a variable 1s “stuck at bound”, remove it

- do final optimality check

CPU-time in seconds

500

450 -

400

350

300 |

250 |-

200

150

100

50

0

with shrinking ——

o

0

1
5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Number of examples
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Summary
How can One Train SVMs Efficiently?

SVM“&ht (31s0 SVMtorch, mySVM, BSVM, etc.)

« solve dual QP to obtain hyperplane from o-coefficients

- iteratively decompose large QP into a sequence of small QPs

- select working set according to steepest feasible descent criterion
- check optimality using Karush-Kuhn-Tucker conditions

Other training algorithms:

« SMO requires working set of size two => simple analytical solution
of QP subproblems [Platt, 1999]

« ASVM restricted to linear SVMs with quadratic loss => fast for low
dimensional data [Mangasarian & Musicant, 2000]

« Nearest Point Algorithm restricted to quadratic loss => compute
distance between convex hulls [Keerthi et al., 1999]
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Part 3: Why do SVMs Work?

«worst-case bounds
-bounds on the expected generalization error
-leave-one-out estimation
.necessary criteria for leave-one-out
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...classifies as well as possible!?

What is a “good” classification rule 7?

P(h(x)#y) = jA(h(X)iy)dP(x,y) = Errp(h)

What is a “good” learner L?

“Worst-Case’ Learner:

P(Errp(h;)>¢g)<m

“Average-Case” Learner:

E(Errp(hy)) = [Errp(h)dP(xp,pp). . P(x,3,)
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SVMs as Worst-Case Learner

Goal: Guarantee of the form
P(Errp(h;)>¢€)<m

2
Theorem: P(Errp(h)—ErrS(h)Z(D(R—z, n, nD <n [Shawe-Taylor et al,1996]
)

So, 1f
- the training error Erry (k) on sample S 1s low and
- the margin 0 1s large,

then with probablility n the SVM will output a classification rule with
true error

2
R
Errp(h;) <Errg(h;)+ (D(?,n, ﬂj

Problem: For most practical problems this bound is vacuous,
1.c. Errp(h;)<1.
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SVMs as Average-Case Learner

Theorem: The expected error of an SVM 1s bounded by

2ER2 +2CR’E ”
DA P

= 1 1
E(Errp(hgyy,)) < . C>—
& 2R
n
R 2
25[5 +2(CR™ + 1)E[ > gl.]
=1 1
E(Errp(hgyy) < < C<—
& 2R

) n

with E(R—j the expected soft margin and E[ > él} the expected training

2
o
n=1

error bound [Joachims, 2001] [Vapnik, 1998].

Problem: The expectations are unknown.
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Leave-One-Out
Tl'aillillg Set: (-%19 yl)a (-%29 J/2), (-%39 y3)9 ceey (-?Cna yn)

Approach: Repeatedly leave one example out for testing.

train on test on

> > > > >
(Xz, y2)> (X3, y3)9 ()C4, y4)9 cees (xﬂa yn) (Xl, yl)

> > > > > .
(X1, y1), (X3, ¥3), (X4, ¥4), -, KXn,y,)  (52,)2) |=> Error estimate:

n

1
Errloo(h):;l Z

i=1

> > > > >
(Xl, y1)> (x2> y2)a ()C4, y4)9 AR (xﬂa yn) ()C3, y3)

hi('%i):yi

> > > > >
()Cl, yl)a(xza yZ)a(x39 y3)> .. 'a(x”—byn—l) (xﬂa yn)

Question: Is there a connection between margin and the estimate?
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Necessary Cond. for Leave-One-Out Error of SVM

Lemma: SVM [hi(§i)¢ yJ = [2ocl.R2 +E.> 1} [Joachims, 2000] [Jaakkola
& Haussler, 1999] [Vapnik
& Chapelle, 2000]

Input:

Example:
« a, dual variable of example i
. &, slack variable of example i payR*+E, leave-one-out error
. ||l <® bound on length 0.0 OK
|| 0.7 OK
\V4 3.5 ERROR
Available after training SVM 0.1 OK
on the full training data 13 OK
0.0 OK
0.0 OK

78




Case 1: Example is no SV

(o;,=0)=(§;=0)= (20L,-R2+F;i< 1) = no leave—one—out error

_|_

2
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Case 2: Example is SV with Low Influence

_|_
_|_

2
[ocl. < O—; < C) — (F;l. =0)= (2R +F;l.< 1) = no leave—one—out error
R
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Case 2: Example is SV with Low Influence

_|_
_|_

2
[Otl. < O—; < C] — (il =0) = (2R +§l.< 1) = no leave—one—out error
R
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Case 3: Example has Small Training Error

(o, =C)A (g, <1~ 2CR2) = (20(,-R2+§l.< 1) = no leave—one—out error
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Case 3: Example has Small Training Error

(o, =C)A (g, <1~ 2CR2) = (20(,-R2+§l.< 1) = no leave—one—out error
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Experiment: Reuters-21578

« 6451 training examples
« 6451 test examples for holdout testing
« ~27,000 features

Average error estimate over 10 random training/test splits:

N ) ) v\v\
4.5 B AvgEstimatedError
\\ B AvgHoldoutError
4 \\‘ v Default

Error

i

>~

earn acq money—fx grain crude trade interest ship wheat corn

=> small bias, variance of estimators 1s approximately equal
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Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always leave-out-out errors.

Algorithm: . (R, o, &) = train SVM(X,0,0);
« for all training examples, do

e if £,>1 then loo++;
. else if (po,R> +E,< 1 ) then loo=loo;

« else train SVM(X, a,&);

Experiment:
Training Retraining Steps (%) CPU-Time (sec)
Examples p =1 p =2 p =1 p =2
Reuters 6451 0.20% 0.58% 11.1 32.3
WebKB 2092 6.78% 20.42% 78.5 2354
Ohsumed 10000 1.07% 2.56% 433.0 1132.3
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Estimated Error of SVM

Leave-One-Out Error Estimate: E””zoo(h):,% Z hi(x)=y,

i=1

For general SVMs:

[hi(?cl-);t yJ = [2%.132 e > 1} 1%l <R

{ i | 20,R2+E2 1 }

n
1 2
S,ZZ 20,R™ +E;
i=1

=> Erry, (h) < }1

For separable problems:

Gy = [ociR > 1} IH < ®

n

1
== Errloo(h)S { l" OLZ-R221 }
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Summary
Why do SVMs Work?

If

- the training error Erry(h) (on the sample S / on average) 1s low and
- the margin 6/R (on the sample S / on average) is large

then

- the SVM has learned a classification rule with low error rate with
high probablility (worst-case).

. the SVM learns classification rules that have low error rate on
average.

« the SVM has learned a classification rule for which the (leave-one-
out) estimated error rate is low.
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Part 4: When do SVMs Work Well?

Successful Use:
«Optical Character Recognition (OCR) [Vapnik, 1998]
«Face Recognition, etc. [Osuna et al., 1997]
« Text Classification [Joachims, 1997] [Dumais et al., 1998]

Open Questions:
What characterizes these problems?
How can the good performance be explained?

What are “sufficient conditions™ for using (linear) SVMs successfully?
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Learning Text Classifiers

Real-World
o Process
Training Set

- - / \}\Iew Documents

Classifier

Learner

p
I

111']

1]

/

- /

Goal:

- Learner uses training set to find classifier with low prediction error.
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Learning Text Classifiers

Real-World

Trainine Set Process New D .

raining Se ew Documents

o Classifier
Learner

N Y, N Y,

Goal:

- Learner uses training set to find classifier with low prediction error.
Obstacle:

« No Free Lunch: There is no learner that does well on every task.
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Learning Text Classifiers Successfully

Real-World
Trainine Set Process New D .
raining Se ew Documents

Classifier
Learner

N Y, N Y,

The learner produces a classifier with low error rate

<=>

The properties of the learner fit the properties of the process.
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Learning SVM Text Classifiers Successfully

Training Set

Real-World
Process

SVM

The properties of the leawmer fit the properties of the process.

New Documents
— - Classifier = — =
— Learner =
SVM
The learneT produces a classifier with low error rate
<=>
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Representing Text As Feature Vectors

Features: words

0 | baseball
(wordstems)
_ 3 | specs

From: xxx@sciences.sdsu.edu )
Newsgroups: comp.graphics ———— 0 graphICS
Subject: Need specs ow 1| references
e T ey Values: occurrence
for QuickTime. Technical articl 0 car frequency
magazines anttreferences to books would :
be nice, too. O Clmton
| also need the specs in a fromat usable
on a Unix or MS-Dos system. | can't
do much with the QuickTime stuff they 5 :
have on ... T\ > 1] unix

0 | space

2 | quicktime

0 | computer

==> [gnore ordering of words.
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Paradox of Text Classification

30,000 10,000
attributes training examples
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Experimental Results

Reuters Newswire WebKB Collection

« 90 categories

« 4 categories
« 9603 training doc. « 4183 training doc.

Ohsumed MeSH
« 20 categories
« 10000 training doc.

« 3299 test doc. « 226 test doc. - 10000 test doc.

- ~27000 features - ~38000 features - ~38000 features
microaveraged precision/recall Reuters | WebKB | Ohsumed
Naive Bayes 72.3 82.0 62.4
Rocchio Algorithm 79.9 74.1 61.5
C4.5 Decision Tree 79.4 79.1 56.7
k-Nearest Neighbors 82.6 80.5 63.4
SVM 87.5 90.3 71.6

[Joachims, 2002]
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Why Do SVMs Work Well for Text Classification?

A statistical learning model of text classification with SVMs:

4 )
text
classification
task
\_ y,

5 )
properties
=>
model

4 low )
R*/8°
and

\. J

\Zéi)

.

r

low

EErr(hgyi)
of
SVM

~

J
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Margin/Loss Based Bound on the Expected Error

Theorem: The expected error of a soft margin SVM 1is bounded by

n+1
R2 2
pE[?j +pCR E[ > gl]

n=1

1
C>—
n+1 pRZ

n+1
RS
pE| = | T p(CR + 1)E Zé‘;i
)

n=1
C<—

E(Err, (hgyiy)) <

E(Err, (hgy,)) <

n+1
2

Where E(R—j is the expected soft margin and E{ > QJ is the

2
)
n=1

expected training loss on training sets of size n+1 .
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4 )
text
classification
task
\_ y,

First Step Completed

s

\.

properties

5 )

—=>
model

J

(" low
EErr(hgyi)
of
SVM
\_

~

J
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Properties 1+2: Sparse Examples in High Dimension

« High dimensional feature vectors (30,000 features)

« Sparse document vectors: only a few words of the whole language
occur 1n each document

Training Numfber Distinct Words
Examples " (Sparsity)
Features

Reuters 9,603 27,658 74
Newswire Articles (0.27%)
Ohsumed 10,000 38,679 100
MeSH Abstracts (0.26%)
WebKB 3,957 38,359 130
WWW-Pages (0.34%)
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Property 3: Heterogeneous Use Of Words

MODULAIRE BUYS BOISE HOMES PROPERTY

Modulaire Industries said it acquired the design
library and manufacturing rights of privately-owned
Boise Homes for an undisclosed amount of cash.
Boise Homes sold commercial and residential
prefabricated structures, Modulaire said.

JUSTICE ASKS U.S. DISMISSAL OF TWA
FILING

The Justice Department told the Transportation
Department it supported a request by USAir Group
that the DOT dismiss an application by Trans World
Airlines Inc for approval to take control of USAir.
“"Our rationale is that we reviewed the application
for control filed by TWA with the DOT and
ascertained that it did not contain sufficient
information upon which to base a competitive
review,”” James Weiss, an official in Justice’s
Antitrust Division, told Reuters.

USX, CONS. NATURAL END TALKS

USX Corp’s Texas Oil and Gas Corp subsidiary and
Consolidated Natural Gas Co have mutually agreed
not to pursue further their talks on Consolidated’s
possible purchase of Apollo Gas Co from Texas
Oil. No details were given.

E.D. And F. MAN TO BUY INTO HONG KONG
FIRM

The U.K. Based commodity house E.D. And F.
Man Ltd and Singapore’s Yeo Hiap Seng Ltd jointly
announced that Man will buy a substantial stake in
Yeo’s 71.1 pct held unit, Yeo Hiap Seng Enterprises
Ltd. Man will develop the locally listed soft drinks
manufacturer into a securities and commodities
brokerage arm and will rename the firm Man
Pacific (Holdings) Ltd.

No pair of documents shares any words, but “it”, “the”, “and”, “of”,

CCfor,Q, “an,,’ 66a9,, “I]Ot”, “that,,, Céinﬂﬂ.

100




Property 4: High Level Of Redundancy

100 T T T T T T T

Bayes ——
Random ——
20 -
£
]
o
|-
L]
= &0 n
€
o
=
[
T
= 40 —
=
o
&)
P
o
20 F =
D | | | | | | | | |
] 1000 2000 2000 4000 000 000 7000 2000 Qo000

Features ranked by Mutual Information

=> Few features are irrelevant!
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Property 5: “Zipt’s Law”

Reuters
100000 f— — — — —
e Ranked Frequencies < |
o a 800000/(x+5)*1.3 —
CGoE.

10000 - -_
(2]
@
(&)

§ 1000 1
5
8
O
©
2

= 100 ]
3
=z

10 [ ]

1 " L M| " L M| " L M| " L M| -\ L L

1 10 100 1000 10000 100000

Rank by Frequency

k

(c+i)

Zipf’s Law: In text, the i-th frequent word occurs  f; = times.

=> Most words occur very infrequently!
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Text Classification Model

Definition: For the TCat-concept there are s disjoint sets of features.

TCat([py|m|fi], -, [pg|nglf])

Each positive (negative) example contains p, (n,) occurrences from the

f; features in set i.

A N 50 words per document
[20]20(1 00]) | postve 11100 words in dictionary
[4]1]200]
11412007 |
Example: TCat| [5]5]600] jﬂ | —
[9]1]3000] T 9 :
[1]9]3000] i
[10]10/4000} R
documents
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pos

TCat-Concept for WebKB “Course”

[77]29]98], [4|21]52]
[16]2]431],[1]12|341]
[9]1]5045], [1]21]24276]

[169]191|8116] rest

high frequency

medium frequency

high frequency
medium frequency

low frequency

low frequency

98 words
all any assignment assignments
available be book c¢ chapter
class code course cse descrip-
tion discussion document due
each eecs exam exams fall final

section set should solution so-
lutions spring structures stu-
dents syllabus ta text textbook
there thursday topics tuesday
unix use wednesday week will
you your

431 words

account acrobat adapted addi-
son adt ahead aho allowed al-
ternate announced announce-
ment announcements answers
appointment approximately
tuesdays turing turn turned
tuth txt uidaho uiowa ullman
understand ungraded units un-
less upenn usr vectors vi walter
weaver wed wednesdays weekly
weeks weights wesley yurttas

5045 words
002cc 009a 00a 00om Oloct
Olpm O0Zpm 03oct 03pm 03sep
O4dec

gradable gradebook grade-
books gradefreql gradefreq2
gradefreq3 graders gradesheet
gradients grafica grafik

zimmermann zinc zipi zipser zj
zlocate znol zoran zp zwatch
zwhere zwiener zyda

neg

acm address am austin ca cali-
fornia center college computa-
tional conference contact cur-
rent currently d department dr
faculty fax graduate group he

my our paral-

lel performance ph pp pro-

ceedings professor publications

recent research sciences sup-

port techmnical technology uni-

versity vision was working
52 words

me member

aaal academy accesses accurate
adaptation advisor advisory af-
filiated affihations agent agents
alberta album alumni amanda
america amherst annual

victoria virginia visiting vis-

itors visualization vita vitae

volce wa watson weather web-

ster went west wi wife wire-

less wisconsin worked work-

shop workshops wrote yale york
341 words

Oa Ob 0Obl Oe Of Or Osoftware
0x82d4ff 100k 100mhz 100th
1020x620 102k 103k

lunar lunches lunchtime lund
lundberg lunedi lung luniewski
luo luong lupin lupton lure
lurker lus

zuo zuowel zurich zvi zw
zwickau
zzhen00

Zwarico
zygmunt
24276 words

zwaenepoel
zwilling

high frequency

medium frequency

low frequency
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Real Text Classification Tasks as TCat-Concepts

Reuters “Earn”: TCat

Webkb “Course’:

Ohsumed “Pathology”: 7'Cat

TCat

[33]2]65], [32]65]152]
[2|1]171], [3]21]974]
[3|1]3455],[1]10]17020]

[78]52]5821]

[77]29(98], [4|21]52]
[16]2|431], [1]12]341]
[9]1]50457, [1]21]24276]

[169]191|8116]

high frequency
medium frequency
low frequency

rest

high frequency
medium frequency
low frequency

rest

[2]1]10], [1]4]22] high frequency
[2]1]92],[1]2]94] medium frequency
[5]1]4080],[1]10]20922]| low frequency
[197|190|13459] rest
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4 )
text
classification }—p
task
\_ J

Second Step Completed

(5 ) ? ( low ) (" low
properties | ® R*/8° | BErrhgyy)
=> and of
model D& SVM

\. J \_ J \

~

J
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The Margin 5% of TCat-Concepts

Lemma 1: For TCat([py|ni|f1), ... [pg|nglf])  -concepts there 18
always a hyperplane passing through the origin w1th margin 5° at least

Pi
a: —
2.7
i=1
> ad—b°

: . n;
0 2a+2b+a’ with d = ZZ
i=1

bzz%

i=1

Example: The previous example WebKB “course” has a margin of at
least

82> 0.23
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The Length R’ of Document Vectors

Lemma 2: If the ranked term frequencies f; 1n a document with /
words have the form of the generalized Zipf’s Law

1 = k

(c+)°

based on their frequency rank i, then the Euclidean length of the
document vector % is bounded by

d d
EIE I L=
=2 ((c - i)®) " 2 (c+1)°®

i=1 i=1

Example: For WebKB “course” with
470000
J(i —
(5 n l.)l.25

follows that R*<1900 .
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R’, 5", and > &,

Reuters Newswire Stories

for Text Classification

« 10 most frequent categories 22 5 n
« 9603 training examples E [6—2j+CR E > &
« 27658 attributes (=1
E(ErrP(hSVM)) < —
2,2
R /8% DE / R /8 YE,
earn 1143 0 trade 869 9
acq 1848 0 interest 2082 33
money-fx 1489 27 shlp 458 0
grain 585 0 wheat 405 2
crude 810 4 corn 378 0
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Learnability of TCat-Concepts

Theorem: For TCat([p|n,  [pg|n /D) -concepts and
documents Wlth [ words that llow the generalized Zipf’s Law

fi=k/(c+ H°  the expected generalization error of an unbiased

SVM after training on » examples is bounded by

S
2
p.
a — Ef—i

i=1

2 2
E(Errn(hSVM))Srle P with .

2
n;
d: ZTZ

np.
b = ZT

z—l

R<z(

i=1

¥

(c+1)°
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Comparison Theory vs. Experiments

Predicted

Learning Curve Bound Bound on EE;;Z:}:::;?
Error Rate
Sewters E(Err, (hgy ) < ’% 1.5% 1.3%
WebR B E(Err, (hg ) S ’% 11.2% 4.4%
%lft‘ﬁ?li(;y” E(Err, (hg ) S % 94.6% 23.1%

« Model can differentiate between “difficult” and “easy” tasks

- Predicts and reproduces the effect of information retrieval heuristics

(e.g. TFIDF-weighting)
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Sensitivity Analysis

What makes a text classification problem suitable for a linear SVM?

ngh REdundancy: [40|40|50] hlgh frequency
T'Cat| [25|5|1000], [5]25|1000]| medium frequency
[30]30|30000] low frequency

High Discriminatory Power:

[40]40|50] high frequency
TCat| [15]0]500], [0]|15|500], [15|15]1000]

medium frequency
[30]30|30000] low frequency
High Frequency:
[16]4]10], [4|16]10], [20|20|30 high frequency
TCat [30{30]2000] medium frequency
[30]30|30000] low frequency
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What does this Model Provide?

Connects the statistical properties of text classification tasks with
generalization error of SVM!

g text A g A 4 lng ) (" low )
classificationf—p S | R/ || EEMisp)
task properties and of

\. /J 0 y, s ) (LM

|
V

« Explains the behavior of (linear) SVMs on text classification tasks
« Gives guideline for when to apply (linear) SVMs

« Provides formal basis for developing new methods
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Summary
When do (Linear) SVMs Work Well?

low
of

SVM

text
classification
task

5

properties

Intuition: If the problem can be cast as a TCat-concept with
« high redundancy,

- strongly discriminating features
- particularly in the high frequency region

then linear SVMs achieve a low generalization error [Joachims, 2002].

Assumptions and Restrictions:

- no noise (attribute and classification)

- no variance (only “average” examples)
- only upper bounds, no lower bounds
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Part 3: SVM-X?

-common elements of SVMs for other problem
-learning ranking functions from preferences
-novelty and outlier detection
eTegression
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The Receipe for Cooking an SVMs

Ingredients:
. linear prediction rules i(¥) = w-x+5

- training problem with objective a la min w-w + CZ@Z. and with linear
constraints (=> quadratic program)

Stirr and add flavor:

« Classification

« Ranking [Herbrich et al., 2000][Joachims, 2002c¢]

« Novelty Detection [Schoelkopf et al., 2000]

« Regression [Vapnik, 1998][Smola & Schoelkopf, 1998]

That makes:

- nice SVM with global optimal solution and duality
- often sparse solution (#SVs < n)
« Hint: garnish the dual with kernel to get non-linear prediction rules
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SVM Ranking

Query:

“Support Vector Machine”

Goal:

“rank the document I want
high 1in the list”

File Edit “iew Favorites Tools Help

GBack v = v (@ | ‘Qsearch CaFavorites (% B & [ ~

A Google Search: support vector machine - Microsoft Inters 3| _ O] x|

Address | &) http: fwww. google.com/search?sour ceid=navclisnt@q=suppor t+vector+ machine j @Go |Link5 >

Google ~|pnart vector machine j fhSearch Wweb @ Search Site | @Page Info ~ FUp ~ SHighlight |

3

Advanced Search  Preferences  Language Tools  Search Tips

GO L)g[e |Supp0nvedormach|ne Google Search |

i
: 1 - 10 of abo t 282,000. took 017
~—

Cormputers = Adificial Intelligence = Machine Learnin

Category:

Kernel Machines
Description: A central source of infarmation on kernel based methods, including support vectd@machines, Gaussian...
Category: Computers = Adificial Intelligence = Meural Metworks
wew kernel-rmachines. orgd - 1k - Cached - Similar pages

svrn first. gmd.de/ - Tk - 05 Mar 2002 - Cached - Similar pages

Support Vector Machine

University of Dortrmund, UniDo-Logo. Computer Science Artificial

Intelligence, UniDo-Logo. ... Support Vector Machine. ...

Description: Large-scale support vector machine training software.

Category: Computers = Artificial Intelligence = Meural Metworks = Software

wew-al. o5 uni-dortrmund. de/SOFTYWARE/SYM_LIGHT/svm_light. eng. htrml - 10k - Cached - Similar pages

Support Vector Machines - The Book - Support Vector

.. REPRINT NOWY AWVAILABLE. This book is the first comprehensive introduction to Support

Vector Machines (S¥Ms), a new generation learning system based on recent ...

Description: First comprehensive introductory book to the field of Support Vector Machines, a novel machine
learning...

Category: Computers = Adificial Intelligence = Machine Learning = Publications = Books

wewy, support-vector.net/ - 8k - 05 Mar 2002 - Cached - Similar pages

Support Vector Machine - The Software
.. Pointers to Support Vector Machine and Gaussian Processes Software. Collobert and
Bengio's Tarch; Stefan Ruping's mySYM for Windows and Unix; Java Implementation ...

swim first. amd.de -= wisiwi kernel-machines org - [ Translate this page | 2 8 2 ’ OOO hltS |

@ - S [ et

S
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Training Examples from Clickthrough

Assumption: If a user skips a link a and clicks on a link » ranked
lower, then the user preference reflects rank(b) < rank(a).

Example: (3 < 2) and (7<2), (7<4), (7<3), (7<6)

Ranking Presented to User:

1. Kernel Machines
http.//svm.first.gmd.de/

2. Support Vector Machine
http://jbolivar.freeservers.com/

3. SVM-Light Support Vector Machine
http.//ais.gmd.de/~thorsten/svm light/

4. An Introduction to Support Vector Machines
http://www.support-vector.net/

5. Support Vector Machine and Kernel ... References
http://svm.research.bell-labs.com/SVMprefs.html

6. Archives of SUPPORT-VECTOR-MACHINES ...
http://www.jiscmail.ac.uk/lists/SUPPORT...

7. Lucent Technologies: SVM demo applet
http://svm.research.bell-labs.com/SVT/SVMsvt. html

8. Royal Holloway Support Vector Machine
hitp://svm.dcs.rhbnc.ac.uk/
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Learning to Rank

Assume:
- distribution of queries P(Q)
« distribution of target rankings for query P(R | Q)

Given:
. collection D of m documents
- 1.1.d. training sample (¢, (), ..., (¢, 7,)

Design:

. set of ranking functions F, with elements f:0 — P” " (weak ordering)

- loss function I(r, r))
« learning algorithm

Goal:
. find f° € F with minimal R ,(f) = j 1I(f(q), )dP(q, 1)
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A Loss Function for Rankings

For two orderings r, and r,, a pair d,#d; 1s

- concordant, 1t r, and r, agree 1n their ordering
P = number of concordant pairs

- discordant, 1f r, and r, disagree in their ordering
Q = number of discordant pairs

Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer &
Singer, 01], [Herbrich et al., 98] ...

I(r,,ry) = O

Example:
r, = (a,c,d, b,e,f, g h)
ry, = (a,b,c,d, e, f, g h)

=> discordant pairs (¢,b), (d,b) => I(r,r,) = 2
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A Loss Function for Rankings

For two orderings r, and r,, a pair d,#d; 1s

- concordant, 1t r, and r, agree 1n their ordering
P = number of concordant pairs
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Interpretation of Loss Function

Notation:
- P concordant pairs
« Q discordant pairs

Kendall’s Tau: ° total ordering, uniform sampling of document pairs
T(,,’,,0)_})_Q:1_ 20 _ I(r,1r°)

— 1280 )
P+0 .
)

2

1 R 2
AvgPrec(r,r°) 2 {l(r, r°) + [ R;r 1 j} [Z ﬁ}

i=1
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What does the Ranking Function Look Like?

Sort documents d, by their “retrieval status value” rsv(q,d;) with query
g [Fuhr, 89]:

rsv(q,d,) = w, * #(of query words in title of d,)
+ w, * #(of query words in H1 headlines of d,)

+ wy * PageRank(d,)
= CD(q,dl.).

Select F as: d;>d;
=

(dl-, dj) Efyv(Q)
=

Wo(q. d;) > Wd(q, d))
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Minimizing Training Loss For Linear Ranking
Functions

Given:
- training sample S = (¢, 7¢), ..., (g, 7,,)

Zero training loss on S:
V(d,d)) € ri; w(qy, d;)>wd(q,, d))

V(d,d) er,; WO(q,,d;)>Wwd(q,,d)

Minimize (bound on) training loss (total ordering) on S:

minZ@l’ i

V(d, d) € ri;(00(q,, d) 2 WD(q, d) +1-& ;)

V(d, d)) € r, (7D(q,, d) 2 WD(q,, d) +1-E, ;)
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Ranking Support Vector Machine

Optimization Problem (primal):
min %w cw+ CZ&Z, i
V(d, d)) € ri;(00(q,, d) 2 WD(q, d) +1-& ;)

V(d, d) € r,;(WD(q,, d) 2 WD(q,, d) + 1-E, ;)

Properties:

- minimize trade-off between training
loss and margin size 6 =1/ ||w]|

« quadratic program, similar to
classification SVM (=> SVMlight)

 convex => unique global optimum

- radius of ball containing the training

points R -

~ (g
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How is this different from ...

... classification?

=> both have same error rate (always classify as non-relevant)
=> very different rank loss

... ordinal regression?

Training set S = (x,, ), ..., (x,,,), With Y ordinal (and finite)

=> ranks need to be comparable between examples
1 2 3

1 2 3

. 1 2 3
1 2 3
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Experiment Setup

Collected training examples with partial feedback about ordering from

e USCT sklpplng links Ranking Presented to User:

1. Kernel Machines
http://svm.first.gmd.de/

2. Support Vector Machine
http://jbolivar.freeservers.com/

3. SVM-Light Support Vector Machine
http.//ais.gmd.de/~thorsten/svm light/

4. An Introduction to Support Vector Machines
http.//www.support-vector.net/

5. Support Vector Machine and Kernel ... References
http://svm.research.bell-labs.com/SVMprefs.html

6. Archives of SUPPORT-VECTOR-MACHINES ...
http..//www.jiscmail.ac.uk/lists/SUPPORT...

7. Lucent Technologies: SVM demo applet
http.//svm.research.bell-labs.com/SVT/SVMsvt.html

8. Royal Holloway Support Vector Machine
http://svm.dcs.rhbnc.ac.uk/

=>(3<2)and (7<2),(7<4),(7<5),(7<6)

- clicked on document should be ranked higher than 50 random
documents

== 8=(qp7" s (@ Ty)
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Query/Document Match Features ®(q,d)

Rank in other search engine:
« Google, MSNSearch, Altavista, Hotbot, Excite

Query/Content Match:

- cosine between URL-words and query
- cosine between title-words and query
- query contains domain-name

Popularity Attributes:

« length of URL 1n characters
- country code of URL

« domain of URL

- word “home” appears 1n title
« URL contains “tilde”

« URL as an atom
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Experiment I: Learning Curve

Training examples: preferences from 112 queries

25

N
(@)

=
(@)

Prediction Error (%)
H
a1

B MSNSearch

Google ----------
Learning ----—---
L + A
s
""""" T
L T e + 4
0 10 20 30 40 50 60 70 80

Number of Training Examples
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Experiment 11

Experiment Setup:

- meta-search engine (Google, MSNSearch, Altavista, Hotbot, Excite)
- approx. 20 users

- machine learning students and researchers from University of
Dortmund Al Unit (Prof. Morik)

- asked to use system as any other search engine
- display title and URL of document

October 31° November 20™ December 2™
collected training data %rameé test ranking
=> 260 training queries Ranking function
(with at least one click) SVM => 139 queries
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Experiment: Learning vs. Google/MSNSearch

Ranking A  Ranking B A better B better Tie Total
Learned Google 29 13 27 69
Learned MSNSearch 18 4 7 29
Learned Toprank 21 9 11 41

~20 users, as of 2nd of December

Toprank: rank by increasing mimium rank over all 5 search engines

=> Result: Learned > Google

Learned > MSNSearch
Learned > Toprank
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Learned Weights

weight feature
0.60 cosine between query and abstract
0.48 ranked in top 10 from Google
0.24 cosine between query and the words in the URL
0.24 document was ranked at rank 1 by exactly one of the 5 search engines
0.17 country code of URL is “.de”
0.16 ranked top 1 by HotBot
-0.15 country code of URL is “.fi”
-0.17 length of URL in characters
-0.32 not ranked in top 10 by any of the 5 search engines
-0.38 not ranked top 1 by any of the 5 search engines
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Summary: SVM Ranking

« An SVM method for learning ranking functions

- Training examples are rankings
=> pairwise preferences like “A should be ranked higher than B”

o Turn training examples into linear inequality constraints
« Results 1n quadratic program similar to classification
« Rank new examples by sorting according to distance from hyperplane

Applications:

- personalizing search engines
- tuning retrieval functions in XML intranets
- recommender systems

- betting on horses
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SVM Novelty/Outlier Detection

Assume:
- distribution of feature vectors P(X)

Goal: [Scholkopf et al., 1995] [Tax & Duin, 2001 ]
- find the region R of (1 - ¢)-support for the distribution P(X), 1.e.

P(xeR)>21-¢

- keep the volume of R as small as possible

=> new points falling outside of R are either outliers, or the distribution
must have changed.

Problem:
- estimate R from unlabeled oberservations x, ..., x

n
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Example: Small and Large Volume Regions

Assume that we know the distribution P(X).

All following are regions with P(x e R)>1-¢:

P(X)

R

trivial optimal sub-optimal
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Find Region using Examples

Problem:

« P(X) cannot be observed directly.

Given:

- training oberservations x,, ...,x, drawn according to P(X).
Approach: [Schoelkopf et al., 1995][Tax & Duin, 2001]

- find smallest ball that includes (most) training observations
Primal: Dual:

n n n o n
9
min P2 r8) = A +CY g, | MaX D(@)=Y aKEx) =3y oo k()

i=1 i=1 i=1li=1

n
2 2
St [6-%] <r7+E, s.t. Yo, =1 and 0<a,<C

i
;20 i=1

. ¢ is the center of the ball, r is its radius.
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Properties of the Primal/Dual

Primal:

s.t. [¢—X%]

£,>0

Dual:

n n

min P, %) = A+CY g, | |max D(@)=S oK)~ Y o0 K

i=1

2

n
<r +g; S. t. Zoc =1 and

i

i=1

i=1 =

1i=1

OSOLZ-SC

Properties:

. convex => global optimum

- &, measures distance from ball

. o, = 0: example lies inside the ball
« 0<a,<C: example on hull of ball

. o, = C: example 1s training error
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One-Class SVM: Separating from the Origin

Observation: [Scholkopf et al., 2000][Scholkopf et al., 2001]

- For kernels depending on the distance between points, the dual 1s the
same as for classification SVM with

- all training observations in the positive class (with slack)
. one virtual negative example with a =—1 and K(%.%;) = 0.
Dual:

max D(a)=Y o kGt) - 3 S0k G:)

n i=1 i=1i=1

=> Equivalent for RBF kernel K(%.%,) = exp(-|x; —?cj\z/ o) |
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Influence of C and RBF-Width c*

small C
large width o2
no outliers

small C
large width o?
some ouliers

large C
large width o?

small C
small width ¢*
(plots courtesy of B. Schoelkopf)
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Summary: SVM Novelty Detection

- Find small region where most observations fall
« One-Class SVM.: separate observations from origin

« Outliers (or new observations after shift in distribution) lie outside of
region

« Training problem similar to classification SVM

Further work:

« Extension to v-SVMs and error bounds [Scholkopf et al., 2001]
[Scholkopf et al., 2001]

« SVM clustering [Ben-Hur et al., 2001]

Applications:
« Text classification [Manevitz & Yousef, 2001 ]
« Topic detection
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SVM Regression

Loss function:
- g-Insensitive region with zero loss
« linear loss beyond the “tube”

A /—s .

—€ +E€

Graph taken from [Smola & Schoelkopf, 1998]
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Primal SVM Optimization Problems

Classification:
A
AN
AN
N
AN
AN
AN
|
)
Regression:
A
AN /
N /
AN /
AN /
|
€

S
w-w+C

i=1
S.t. y[w-%;+b]>21-¢& and &,>0

e - 2
minimize J(w, b, &) =

Jxe

I

NI | —

" -
+CY (5 +E)
i=1

S.t. y,—[W-%;+b]<e+& and &> 0

. e N 2 2
minimize R(w, b, &, £°)

S\

1>,
2

—yﬁ[?"'%ﬁb]ﬁﬁif and £22>0
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Dual SVM Optimization Problems

m m m
. > 1 > 2
maximize L(a) = | " p;o; |- 5 DD aou K, vy)
m i=1 i=1i=1
S.t. Z oau =0 and 0<a,<C

i=1

Classification: (}1,y,), ..., 3ny,) ~P(%y) % eR yie{l-1 m=n
ep,=1for1<i<n
eu, =y for1<i<n

'\911’ :%i fOI‘lSl.SI’l

Regression: (31,y,), ... Gny,) ~PGy) e®R' ye®R m = 2n
ep,=e+y fori<i<mandp, = e-y, forn+1<i<2n
eu,=1for1<i<mandu, = -1 forn+1<i<2n

eV, =xfor1<i<nandv, = x, forn+1<i<2n
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Conclusions

« What! How! Why! When! ...and that SVMs solve any other problem!
Info

« Chris Burges’ tutorial (Classification)
http://www.kernel-machines.org/papers/Burges98.ps.gz

« Smola & Scholkopf’s tutorial (Regression)
http://www.kernel-machines.org/papers/tr-30-1998.ps.gz

« Cristianin1 & Shawe-Taylor book: Introduction to SVMs, Cambridge
University Press, 2000.

« Scholkopf” & Smola book: Learning with Kernels, MIT Press, 2002.

« My dissertation: Learning to Classify Text Using Support Vector
Machines, Kluwer.

- Software: SVM‘&" for Classification, Regression, and Ranking
http://svmlight.joachims.org/

- General: http://www.kernel-machines.org
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	Overview
	What is an SVM?
	• optimal hyperplane and soft-margin for inseparable data
	• handling non-linear rules and non-standard data using kernels

	How to use SVMs effectively and efficiently?
	How to train SVMs?
	• decomposition algorithms / primal vs. dual / shrinking

	Why can SVMs learn?
	• worst-case / average-case / relation to cross-validation

	When do SVMs work well?
	• properties of classification tasks - a case study in text classification

	SVM-{ranking, novelty detection, regression, ...}?
	• ranking e.g. learning retrieval functions
	• novelty detection: e.g. topic detection


	What I will not (really) talk about...
	• SVMs in the transductive setting [Vapnik, 1998][Joachims, 1999c][Bennet & Demiriz, 1999]
	• Kernel Principal Component Analysis [Schoelkopf et al., 1998]
	• connection to related methods (i.e. Gaussian Process Classifiers, Ridge Regression, Logistic Re...
	Warning: At some points throughout this tutorial, precision is sacrificed for better intuition (e...

	Text Classification
	E.D. And F. MAN TO BUY INTO HONG KONG FIRM
	The U.K. Based commodity house E.D. And F. Man Ltd and Singapore’s Yeo Hiap Seng Ltd jointly anno...

	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.


	Representing Text as Attribute Vectors
	Attributes: Words (Word-Stems)
	Values: Occurrence- Frequencies
	==> The ordering of words is ignored!

	Paradoxon of Text Classification
	30,000 Attributes
	10,000 Training Examples
	... but this is not necessarily a problem!
	Good News: SVMs can overcome this problem!
	Bad News: This does not hold for all high-dimensional problems!

	Experimental Results
	Reuters Newswire
	• 90 categories
	• 9603 training doc.
	• 3299 test doc.
	• ~27000 features

	WebKB Collection
	• 4 categories
	• 4183 training doc.
	• 226 test doc.
	• ~38000 features

	Ohsumed MeSH
	• 20 categories
	• 10000 training doc.
	• 10000 test doc.
	• ~38000 features
	Naive Bayes
	72.3
	82.0
	62.4
	Rocchio Algorithm
	79.9
	74.1
	61.5
	C4.5 Decision Tree
	79.4
	79.1
	56.7
	k-Nearest Neighbors
	82.6
	80.5
	63.4
	SVM
	87.5
	90.3
	71.6



	Part 1 (a): What is an SVM? (linear)
	• prediction error vs. training error
	• learning by empirical risk minimization
	• VC-Dimension and learnability
	• linear classification rules
	• optimal hyperplane
	• soft-margin separation

	Generative vs. Discriminative Training
	Process:
	• Generator: Generates descriptions according to distribution .
	• Teacher: Assigns a value to each description based on .

	Discriminative Training
	• make assumptions about the set H of classifiers
	• estimate error of classifiers in H from the training data
	• select classifier with lowest error rate
	• example: SVM, decision tree


	True (Prediction) Error
	What is a “good” classification rule ?
	Loss function D:
	• 1 if not equal
	• 0 if equal

	What is the “optimal” Learner ?
	Finds the classification rule for which is minimal:
	Problem:
	unknown. Known are training examples .

	Principle: Empirical Risk Minimization (ERM)
	Learning Principle:
	Find the decision rule for which the training error is minimal:
	Training Error:
	==> Number of misclassifications on training examples.
	Central Problem of Statistical Learning Theory:
	When does a low training error lead to a low generalization error?

	When is it Possible to Learn?
	Definition [Consistency]: ERM is consistent for
	• a hypothesis space H and
	• independent of the distribution

	if and only if the sequence
	converges in probability.
	<==> one-sided uniform convergence [Vapnik]
	<==> VC-dimension of H is finite [Vapnik].

	Vapnik/Chervonenkis Dimension
	Definition: The VC-dimension of H is equal to the maximal number d of examples that can be split ...
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	Linear Classifiers
	Rules of the Form: weight vector , threshold
	Geometric Interpretation (Hyperplane):

	Linear Classifiers (Example)
	Text Classification: Physics (+1) versus Receipes (-1)
	D1
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	0
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	D2
	0
	0
	0
	3
	0
	1
	1
	-1
	D3
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	w,b
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	-1
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	b=1
	D1:
	D2:

	VC-Dimension of Hyperplanes in
	• Three points in can be shattered with hyperplanes.
	• Four points cannot be shattered.
	=> Hyperplanes in -> VCdim=3
	General: Hyperplanes in -> VCdim=N+1

	Rate of Convergence
	Question: After n training examples, how close is the training error to the true error?
	With probablility it hold for all :
	• n number of training examples
	• d VC-dimension of hypothesis space H

	==>

	SVM Motivation: Structural Risk Minimization
	Idea: Structure on hypothesis space.
	Goal: Minimize upper bound on true error rate.

	Optimal Hyperplane (SVM Type 1)
	Assumption: The training examples are linearly separable.

	VC-Dimension of “thick” Hyperplanes
	Lemma: The VCdim of hyperplanes with margin and description vectors is bounded by
	The VC-dimension does not necessarily depend on the number of attributes or the number of paramet...

	Maximizing the Margin
	The hyperplane with maximum margin
	<~ (roughly, see later) ~>
	The hypothesis space with minimal VC-dimension according to SRM
	Support Vectors: Examples with minimal distance.

	Computing the Optimal Hyperplane
	Training Examples:
	Requirement 1: Zero training error!
	Requirement 2: Maximum margin!
	Distance d of point x from hyperplane <w,b>:
	maximize d, with
	=> Requirement 1 & Requirement 2:
	maximize d, with

	Primal Optimization Problem
	maximize d, with
	Set :
	=> maximize , with
	Cancel:
	=> maximize , with
	Minimize inverse and take square:
	=> minimize , with

	Example: Optimal Hyperplane vs. Perceptron
	Train on 1000 pos / 1000 neg examples for “acq” (Reuters-21578).

	Non-Separable Training Samples
	• For some training samples there is no separating hyperplane!
	• Complete separation is suboptimal for many training samples!

	Soft-Margin Separation
	Idea: Maximize margin and minimize training error simultanously.
	Soft Margin:
	minimize
	s. t. and
	Hard Margin:
	minimize
	s. t.
	Hard Margin (separable)
	Soft Margin (training error)

	Controlling Soft-Margin Separation
	Soft Margin: minimize
	s. t. and
	• is an upper bound on the number of training errors.
	• C is a parameter that controls trade-off between margin and error.

	Large C
	Small C

	Example Reuters “acq”: Varying C
	Observation: Typically no local optima, but not necessarily...

	Part 1 (b): What is an SVM? (non-linear)
	• quadratic programs and duality
	• properties of the dual
	• non-linear classification rules
	• kernels and their properties
	• kernels for vectorial data
	• kernels for non-vectorial data

	Quadratic Program
	minimize
	s.t.
	s.t.
	• k linear inequality constraints
	• m linear equality constraints
	• Hessian is pos. semi-definite => convex, no local optima
	• is feasible, if it fulfills constraints


	Fermat Theorem
	Given an unconstrained optimization problem
	minimize
	with convex and differentiable, a necessary and sufficient conditions for a point to be an optimu...

	Lagrange Function
	Given an optimization problem
	minimize s.t.
	the Lagrangian function is defined as
	• and are called Lagrange Multipliers


	Lagrange Theorem
	Given an optimization problem
	minimize s.t.
	with convex and differentiable and all h affine (w*x+b), necessary and sufficient conditions for ...
	=>

	Karush-Kuhn-Tucker Theorem
	Given an optimization problem
	minimize s.t.
	with convex and differentiable and all g and h affine, necessary and sufficient conditions for a ...
	Sufficient for convex QP:

	Dual Optimization Problem
	Primal OP: minimize
	s. t. and
	Lemma: The solution can always be written as a linear combination
	of the training data.
	Dual OP: maximize
	s.t.
	==> positive semi-definite quadratic program

	Primal <=> Dual
	Theorem: The primal OP and the dual OP have the same solution. Given the solution of the dual OP,
	is the solution of the primal OP.
	Theorem: For any set of feasible points .
	=> two alternative ways to represent the learning result
	• weight vector and threshold
	• vector of “influences”


	Properties of the Soft-Margin Dual OP
	Dual OP: maximize
	s. t.
	• typically single solution (i. e. is unique)
	• one factor for each training example
	• “influence” of single training example limited by C
	• <=> SV with
	• <=> SV with
	• else
	• based exclusively on inner product between training examples


	Non-Linear Problems
	Problem:
	• some tasks have non-linear structure
	• no hyperplane is sufficiently accurate

	How can SVMs learn non-linear classification rules?

	Extending the Hypothesis Space
	Idea:
	==> Find hyperplane in feature space!
	Example:
	==> The separating hyperplane in features space is a degree two polynomial in input space.

	Example
	Input Space: (2 Attributes)
	Feature Space: (6 Attributes)

	Kernels
	Problem: Very many Parameters! Polynomials of degree p over N attributes in input space lead to a...
	Solution: [Boser et al., 1992] The dual OP need only inner products => Kernel Functions
	Example: For calculating gives inner product in feature space.
	We do not need to represent the feature space explicitly!

	SVM with Kernels
	Training: maximize
	s. t.
	Classification: For new example x
	New hypotheses spaces through new Kernels:
	Linear:
	Polynomial:
	Radial Basis Functions:
	Sigmoid:

	Example: SVM with Polynomial of Degree 2
	Kernel:
	plot by Bell SVM applet

	Example: SVM with RBF-Kernel
	Kernel: plot by Bell SVM applet

	What is a Valid Kernel?
	Mercer’s Theorem (see [Cristianini & Shawe-Taylor, 2000])
	Theorem [Saitoh]: Let X be a finite input space of n points . A function is a valid kernel in X i...
	that is symmetric
	and positive semi-definite

	How to Construct Valid Kernels?
	Theorem: Let and be valid Kernels over , , , , a real-valued function on , with a kernel over , a...
	=> Construct complex Kernels from simple Kernels.

	Kernels for Non-Vectorial Data
	Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequ...
	Example [Lodhi et al., 2002]: For consider the following features space
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	=> , efficient computation via dynamic programming.
	=> Fisher Kernels [Jaakkola & Haussler, 1998]

	Computing String Kernel (I)
	Definitions:
	• : sequences of length n over alphabet
	• : index sequence (sorted)
	• : substring operator
	• : range of index sequence

	Kernel: Average range of common subsequences of length n
	Auxiliary Function: Average range to end of sequence of common subsequences of length n

	Computing String Kernel (II)
	Kernel:
	Auxiliary:

	Other Kernels for Complex Data
	General information on Kernels:
	• Introduction to Kernels [Cristianini & Shawe-Taylor, 2000]
	• All the details on Kernels + Background [Schoelkopf & Smola, 2002]

	Kernels for specific structures:
	• Diffusion Kernels for graphs [Kondor & Lafferty, 2002]
	• Kernels for grammars [Collins & Duffy, 2002]
	• Kernels for trees, lists, etc. [Gaertner et al., 2002]


	Two Reasons for Using a Kernel
	(1) Turn a linear learner into a non-linear learner
	(e.g. RBF, polynomial, sigmoid)
	(2) Make non-vectorial data accessible to learner
	(e.g. string kernels for sequences)

	Summary What is an SVM?
	Given:
	• Training examples
	• Hypothesis space according to kernel
	• Parameter C for trading-off training error and margin size

	Training:
	• Finds hyperplane in feature space generated by kernel.
	• The hyperplane has maximum margin in feature space with minimal training error (upper bound ) g...
	• The result of training are . They determine .

	Classification: For new example
	Part 2: How to use an SVM effectively and efficiently?
	• normalization of the input vectors
	• selecting C
	• handling unbalanced datasets
	• selecting a kernel
	• multi-class and multi-label classification
	• selecting a training algorithm


	Design Decisions in Working with SVMs
	Setting up the learning task
	• multi-class problems
	• multi-label problems

	Representation of the data (efficiency and effectiveness)
	• selecting features
	• selecting feature values
	• normalizing the data (directional vs. non-directional data)
	• selecting a kernel

	Selecting a good value for the parameter C and kernel parameters
	Selecting a training algorithm that is efficient for the particular QP
	• kernel SVM vs. linear SVM
	• many sparse features vs. few dense features


	Handling Multi-Class / Multi-Label Problems
	Standard classification SVM addresses binary problems
	Multi-class classification:
	• one-against-rest decomposition into binary problems
	• learn one binary SVM per class with
	• assign new example to
	• pairwise decomposition into binary problems
	• learn one binary SVM per class pair
	• assign new example by majority vote
	• reducing number of classifications [Platt et al., 2000]
	• multi-class SVM [Weston & Watkins, 1998]
	• multi-class SVM via ranking [Crammer & Singer, 2001]

	Multi-label classification:
	• learn one binary SVM per class with


	Which Features to Choose?
	Things to take into consideration:
	• if features sparse, then dimensionality of space no efficiency problem
	• computations based on inner product between vectors
	• consider frequency distribution of features (e.g. many rare features)
	• Zipf distribution of words
	• see TCat-model
	• SVMs can handle redundancy in features
	• bag-of-words representation redundant for topic classification
	• see TCat-model
	• as few irrelevant features as possible
	• stopword removal often helps in text classification
	• see TCat-model


	How to Assign Feature Values?
	Things to take into consideration:
	• importance of feature is monotonic in its absolute value
	• the larger the absolute value, the more influence the feature gets
	• typical problem: number of doors [0-5], price [0-100000]
	• want relevant features large / irrelevant features low (e.g. IDF)
	• normalization to make features equally important
	• by mean and variance:
	• by other distribution
	• normalization to bring feature vectors onto the same scale
	• directional data: text classification
	• by normalizing the length of the vector according to some norm
	• changes whether a problem is (linearly) separable or not
	• scale all vectors to a length that allows numerically stable training


	Selecting a Kernel
	Things to take into consideration:
	• kernel can be thought of as a similarity measure
	• examples in the same class should have high kernel value
	• examples in different classes should have low kernel value
	• ideal kernel: equivalence relation
	• normalization also applies to kernel
	• relative weight for implicit features
	• normalize per example for directional data
	• potential problems with large numbers, for example polynomial kernel for large d


	Selecting Regularization Parameter C
	Common Method
	• a reasonable starting point and/or default value is
	• search for C on a log-scale, for example
	• selection via cross-validation or via approximation of leave-one-out [Jaakkola&Haussler,1999][V...

	Note
	• optimal value of C scales with the feature values
	• implicit slack variables via infrequent features
	• if every example has one unique feature , then always separable
	• unique features act like squared slack variable

	minimize s. t.

	Selecting Kernel Parameters
	Problem
	• results often very sensitive to kernel parameters (e.g. variance in RBF kernel)
	• need to simultaneously optimize C, since optimal C typically depends on kernel parameters

	Common Method
	• search for combination of parameters via exhaustive search
	• selection of kernel parameters typically via cross-validation

	Advanced Approach
	• avoiding exhaustive search for improved search efficiency [Chapelle et al, 2002]


	Handling Unbalanced Datasets
	Problem
	• often the number of positive examples is much lower than the number of negative examples
	• SVM minimizes error rate => always say “no” gives great error rate, but poor recall

	Common Methods
	• cost model that makes errors on positive examples more expensive

	min s.t. and
	• change threshold after training to some higher value


	Selecting an SVM Training Algorithm
	SVMlight (also SVMtorch, mySVM, BSVM, etc.) [Joachims, 1999b]
	• solve dual QP to obtain hyperplane from -coefficients
	• iteratively decompose large QP into a sequence of small QPs
	• handles kernels and treats linear SVM as special case

	SMO [Platt, 1999]
	• special case of working sets of size two
	• simple analytical solution of QP subproblems

	ASVM [Mangasarian & Musicant, 2000]
	• restricted to linear SVMs with quadratic loss
	• fast for low dimensional data

	Nearest Point Algorithm [Keerthi et al., 1999]
	• restricted to quadratic loss
	• compute distance between convex hulls


	Part 3: How to Train SVMs?
	• efficiency of primal vs. dual
	• decomposition algorithm
	• working set selection
	• optimality criteria
	• caching
	• shrinking

	How can One Train SVMs Efficiently?
	Solve one of the following quadratic optimization problems:
	min
	s. t. and
	<= DUAL =>
	max
	s. t.
	=> positive semi-definite quadratic program with variables

	Decomposition
	Idea: Solve small subproblems until convergence (Osuna, et al.)!

	Decomposition
	Idea: Solve small subproblems until convergence (Osuna, et al.)!
	Time complexity: working set of size and nonzero features:
	• extracting subproblem:
	• solving subproblem:
	• updating large problem with result of subproblem:


	What Working Set to Select Next?
	Solution: Select subproblem with q variables that minimizes
	Efficiency: Selection linear in number of examples.
	Convergence: Proofs by Chi-Chen Lin / Keerthi under mild assumptions.

	How to Tell that we Found the Optimal Solution?
	Karush-Kuhn-Tucker conditions lead to the following criterion:
	maximize
	is optimal s. t.
	<=>

	Demo
	The Steps of Solving a 2-d Problem.

	Caching
	Observation: Most CPU-time is spent on computing the Hessian!
	Idea: Cache kernel evaluations.
	Result: A small cache leads to a large improvement.

	Shrinking
	Idea: If we knew the set of SVs, we could solve a smaller problem! (complexity per iteration from...
	Algorithm:
	• monitor the KKT-conditions in each iteration
	• if a variable is “stuck at bound”, remove it
	• do final optimality check


	Summary How can One Train SVMs Efficiently?
	SVMlight (also SVMtorch, mySVM, BSVM, etc.)
	• solve dual QP to obtain hyperplane from -coefficients
	• iteratively decompose large QP into a sequence of small QPs
	• select working set according to steepest feasible descent criterion
	• check optimality using Karush-Kuhn-Tucker conditions

	Other training algorithms:
	• SMO requires working set of size two => simple analytical solution of QP subproblems [Platt, 1999]
	• ASVM restricted to linear SVMs with quadratic loss => fast for low dimensional data [Mangasaria...
	• Nearest Point Algorithm restricted to quadratic loss => compute distance between convex hulls [...


	Part 3: Why do SVMs Work?
	• worst-case bounds
	• bounds on the expected generalization error
	• leave-one-out estimation
	• necessary criteria for leave-one-out

	...classifies as well as possible!?
	What is a “good” classification rule ?
	What is a “good” learner ?
	“Worst-Case” Learner:
	“Average-Case” Learner:

	SVMs as Worst-Case Learner
	Goal: Guarantee of the form
	Theorem: [Shawe-Taylor et al,1996]
	So, if
	• the training error on sample S is low and
	• the margin d is large,

	then with probablility the SVM will output a classification rule with true error .
	Problem: For most practical problems this bound is vacuous, i.e. .

	SVMs as Average-Case Learner
	Theorem: The expected error of an SVM is bounded by
	with the expected soft margin and the expected training error bound [Joachims, 2001] [Vapnik, 1998].
	Problem: The expectations are unknown.

	Leave-One-Out
	Training set:
	Approach: Repeatedly leave one example out for testing.
	...
	...

	Question: Is there a connection between margin and the estimate?

	Necessary Cond. for Leave-One-Out Error of SVM
	Lemma: SVM [Joachims, 2000] [Jaakkola & Haussler, 1999] [Vapnik & Chapelle, 2000]
	Input:
	0.0
	0.7
	3.5
	0.1
	1.3
	0.0
	0.0
	...
	OK
	OK
	ERROR
	OK
	OK
	OK
	OK
	...
	• dual variable of example i
	• slack variable of example i
	• bound on length

	=>

	Case 1: Example is no SV
	Case 2: Example is SV with Low Influence
	Case 2: Example is SV with Low Influence
	Case 3: Example has Small Training Error
	Case 3: Example has Small Training Error
	Experiment: Reuters-21578
	• 6451 training examples
	• 6451 test examples for holdout testing
	• ~27,000 features
	Average error estimate over 10 random training/test splits:
	=> small bias, variance of estimators is approximately equal

	Fast Leave-One-Out Estimation for SVMs
	Lemma: Training errors are always leave-out-out errors.
	Algorithm:
	• () = train_SVM(X,0,0);
	• for all training examples, do
	• if then loo++;
	• else if () then loo=loo;
	• else train_SVM();

	Experiment:
	Reuters
	6451
	0.20%
	0.58%
	11.1
	32.3
	WebKB
	2092
	6.78%
	20.42%
	78.5
	235.4
	Ohsumed
	10000
	1.07%
	2.56%
	433.0
	1132.3


	Estimated Error of SVM
	Leave-One-Out Error Estimate:
	For general SVMs:
	=>
	=>

	Summary Why do SVMs Work?
	If
	• the training error (on the sample S / on average) is low and
	• the margin d/R (on the sample S / on average) is large

	then
	• the SVM has learned a classification rule with low error rate with high probablility (worst-case).
	• the SVM learns classification rules that have low error rate on average.
	• the SVM has learned a classification rule for which the (leave-one- out) estimated error rate i...


	Part 4: When do SVMs Work Well?
	Successful Use:
	• Optical Character Recognition (OCR) [Vapnik, 1998]
	• Face Recognition, etc. [Osuna et al., 1997]
	• Text Classification [Joachims, 1997] [Dumais et al., 1998]
	• ...

	Open Questions:
	What characterizes these problems?
	How can the good performance be explained?
	What are “sufficient conditions” for using (linear) SVMs successfully?

	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.


	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.

	Obstacle:
	• No Free Lunch: There is no learner that does well on every task.


	Learning Text Classifiers Successfully
	The learner produces a classifier with low error rate
	<=>
	The properties of the learner fit the properties of the process.

	Learning SVM Text Classifiers Successfully
	The learner produces a classifier with low error rate
	<=>
	The properties of the learner fit the properties of the process.

	Representing Text As Feature Vectors
	Features: words (wordstems)
	Values: occurrence frequency
	==> Ignore ordering of words.

	Paradox of Text Classification
	30,000 attributes
	10,000 training examples

	Experimental Results
	Reuters Newswire
	• 90 categories
	• 9603 training doc.
	• 3299 test doc.
	• ~27000 features

	WebKB Collection
	• 4 categories
	• 4183 training doc.
	• 226 test doc.
	• ~38000 features

	Ohsumed MeSH
	• 20 categories
	• 10000 training doc.
	• 10000 test doc.
	• ~38000 features
	Naive Bayes
	72.3
	82.0
	62.4
	Rocchio Algorithm
	79.9
	74.1
	61.5
	C4.5 Decision Tree
	79.4
	79.1
	56.7
	k-Nearest Neighbors
	82.6
	80.5
	63.4
	SVM
	87.5
	90.3
	71.6



	Why Do SVMs Work Well for Text Classification?
	A statistical learning model of text classification with SVMs:
	text classification task

	Margin/Loss Based Bound on the Expected Error
	Theorem: The expected error of a soft margin SVM is bounded by
	Where is the expected soft margin and is the expected training loss on training sets of size .

	First Step Completed
	text classification task

	Properties 1+2: Sparse Examples in High Dimension
	• High dimensional feature vectors (30,000 features)
	• Sparse document vectors: only a few words of the whole language occur in each document
	Reuters Newswire Articles
	9,603
	27,658
	74
	(0.27%)
	Ohsumed MeSH Abstracts
	10,000
	38,679
	100
	(0.26%)
	WebKB WWW-Pages
	3,957
	38,359
	130
	(0.34%)


	Property 3: Heterogeneous Use Of Words
	MODULAIRE BUYS BOISE HOMES PROPERTY
	Modulaire Industries said it acquired the design library and manufacturing rights of privately-ow...
	No pair of documents shares any words, but “it”, “the”, “and”, “of”, “for”, “an”, “a”, “not”, “th...

	Property 4: High Level Of Redundancy
	=> Few features are irrelevant!

	Property 5: “Zipf’s Law”
	Zipf’s Law: In text, the i-th frequent word occurs times.
	=> Most words occur very infrequently!

	Text Classification Model
	Definition: For the TCat-concept there are disjoint sets of features. Each positive (negative) ex...
	Example:

	TCat-Concept for WebKB “Course”
	Real Text Classification Tasks as TCat-Concepts
	Reuters “Earn”:
	Webkb “Course”:
	Ohsumed “Pathology”:

	Second Step Completed
	text classification task

	The Margin of TCat-Concepts
	Lemma 1: For -concepts there is always a hyperplane passing through the origin with margin at least
	Example: The previous example WebKB “course” has a margin of at least

	The Length of Document Vectors
	Lemma 2: If the ranked term frequencies in a document with words have the form of the generalized...
	based on their frequency rank , then the Euclidean length of the document vector is bounded by
	Example: For WebKB “course” with
	follows that .

	, , and for Text Classification
	Reuters Newswire Stories
	• 10 most frequent categories
	• 9603 training examples
	• 27658 attributes
	1143
	0
	1848
	0
	1489
	27
	585
	0
	810
	4
	869
	9
	2082
	33
	458
	0
	405
	2
	378
	0



	Learnability of TCat-Concepts
	Theorem: For -concepts and documents with words that follow the generalized Zipf’s Law the expect...

	Comparison Theory vs. Experiments
	Reuters “earn”
	1.5%
	1.3%
	WebKB “course”
	11.2%
	4.4%
	Ohsumed “pathology”
	94.6%
	23.1%
	• Model can differentiate between “difficult” and “easy” tasks
	• Predicts and reproduces the effect of information retrieval heuristics (e.g. TFIDF-weighting)

	Sensitivity Analysis
	What makes a text classification problem suitable for a linear SVM?
	High Redundancy:
	High Discriminatory Power:
	High Frequency:

	What does this Model Provide?
	Connects the statistical properties of text classification tasks with generalization error of SVM!
	text classification task
	=>
	• Explains the behavior of (linear) SVMs on text classification tasks
	• Gives guideline for when to apply (linear) SVMs
	• Provides formal basis for developing new methods


	Summary When do (Linear) SVMs Work Well?
	Intuition: If the problem can be cast as a TCat-concept with
	• high redundancy,
	• strongly discriminating features
	• particularly in the high frequency region

	then linear SVMs achieve a low generalization error [Joachims, 2002].
	Assumptions and Restrictions:
	• no noise (attribute and classification)
	• no variance (only “average” examples)
	• only upper bounds, no lower bounds


	Part 3: SVM-X?
	• common elements of SVMs for other problem
	• learning ranking functions from preferences
	• novelty and outlier detection
	• regression

	The Receipe for Cooking an SVMs
	Ingredients:
	• linear prediction rules
	• training problem with objective a la and with linear constraints (=> quadratic program)

	Stirr and add flavor:
	• Classification
	• Ranking [Herbrich et al., 2000][Joachims, 2002c]
	• Novelty Detection [Schoelkopf et al., 2000]
	• Regression [Vapnik, 1998][Smola & Schoelkopf, 1998]

	That makes:
	• nice SVM with global optimal solution and duality
	• often sparse solution (#SVs < n)
	• Hint: garnish the dual with kernel to get non-linear prediction rules


	SVM Ranking
	Query:
	• “Support Vector Machine”

	Goal:
	• “rank the document I want high in the list”


	Training Examples from Clickthrough
	Assumption: If a user skips a link a and clicks on a link b ranked lower, then the user preferenc...
	Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	Ranking Presented to User:

	Training Examples from Clickthrough
	Assumption: If a user skips a link a and clicks on a link b ranked lower, then the user preferenc...
	Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	Ranking Presented to User:

	Learning to Rank
	Assume:
	• distribution of queries P(Q)
	• distribution of target rankings for query P(R | Q)

	Given:
	• collection D of m documents
	• i.i.d. training sample

	Design:
	• set of ranking functions F, with elements f: (weak ordering)
	• loss function
	• learning algorithm

	Goal:
	• find with minimal


	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>
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	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	Interpretation of Loss Function
	Notation:
	• P concordant pairs
	• Q discordant pairs

	Kendall’s Tau: total ordering, uniform sampling of document pairs
	Average Precision: ordering with two ranks

	What does the Ranking Function Look Like?
	Sort documents by their “retrieval status value” rsv(,) with query [Fuhr, 89]:
	rsv(,) = * #(of query words in title of ) + * #(of query words in H1 headlines of ) ... + * PageR...
	Select F as:

	Minimizing Training Loss For Linear Ranking Functions
	Given:
	• training sample

	Zero training loss on S:
	Minimize (bound on) training loss (total ordering) on S:

	Ranking Support Vector Machine
	Optimization Problem (primal):
	Properties:
	• minimize trade-off between training loss and margin size d = 1 / ||w||
	• quadratic program, similar to classification SVM (=> SVMlight)
	• convex => unique global optimum
	• radius of ball containing the training points R


	How is this different from ...
	... classification?
	f1(q): - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	f2(q): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
	=> both have same error rate (always classify as non-relevant)
	=> very different rank loss
	... ordinal regression?
	Training set , with Y ordinal (and finite)
	=> ranks need to be comparable between examples

	Experiment Setup
	Collected training examples with partial feedback about ordering from
	• user skipping links

	=> (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	• clicked on document should be ranked higher than 50 random documents =>


	Query/Document Match Features F(q,d)
	Rank in other search engine:
	• Google, MSNSearch, Altavista, Hotbot, Excite

	Query/Content Match:
	• cosine between URL-words and query
	• cosine between title-words and query
	• query contains domain-name

	Popularity Attributes:
	• length of URL in characters
	• country code of URL
	• domain of URL
	• word “home” appears in title
	• URL contains “tilde”
	• URL as an atom


	Experiment I: Learning Curve
	Training examples: preferences from 112 queries

	Experiment II
	Experiment Setup:
	• meta-search engine (Google, MSNSearch, Altavista, Hotbot, Excite)
	• approx. 20 users
	• machine learning students and researchers from University of Dortmund AI Unit (Prof. Morik)
	• asked to use system as any other search engine
	• display title and URL of document

	collected training data => 260 training queries (with at least one click)

	Experiment: Learning vs. Google/MSNSearch
	Learned
	Google
	29
	13
	27
	69
	Learned
	MSNSearch
	18
	4
	7
	29
	Learned
	Toprank
	21
	9
	11
	41
	~20 users, as of 2nd of December

	Toprank: rank by increasing mimium rank over all 5 search engines
	=> Result: Learned > Google Learned > MSNSearch Learned > Toprank

	Learned Weights
	0.60
	cosine between query and abstract
	0.48
	ranked in top 10 from Google
	0.24
	cosine between query and the words in the URL
	0.24
	document was ranked at rank 1 by exactly one of the 5 search engines
	...
	0.17
	country code of URL is “.de”
	0.16
	ranked top 1 by HotBot
	...
	-0.15
	country code of URL is “.fi”
	-0.17
	length of URL in characters
	-0.32
	not ranked in top 10 by any of the 5 search engines
	-0.38
	not ranked top 1 by any of the 5 search engines

	Summary: SVM Ranking
	• An SVM method for learning ranking functions
	• Training examples are rankings => pairwise preferences like “A should be ranked higher than B”
	• Turn training examples into linear inequality constraints
	• Results in quadratic program similar to classification
	• Rank new examples by sorting according to distance from hyperplane
	Applications:
	• personalizing search engines
	• tuning retrieval functions in XML intranets
	• recommender systems
	• betting on horses


	SVM Novelty/Outlier Detection
	Assume:
	• distribution of feature vectors P(X)

	Goal: [Schölkopf et al., 1995] [Tax & Duin, 2001]
	• find the region R of -support for the distribution P(X), i.e.
	• keep the volume of R as small as possible

	=> new points falling outside of R are either outliers, or the distribution must have changed.
	Problem:
	• estimate R from unlabeled oberservations


	Example: Small and Large Volume Regions
	Assume that we know the distribution P(X).
	All following are regions with :
	trivial optimal sub-optimal

	Find Region using Examples
	Problem:
	• P(X) cannot be observed directly.

	Given:
	• training oberservations drawn according to P(X).

	Approach: [Schoelkopf et al., 1995][Tax & Duin, 2001]
	• find smallest ball that includes (most) training observations

	min
	s. t.
	• is the center of the ball, is its radius.


	Properties of the Primal/Dual
	min
	s. t.
	Properties:
	• convex => global optimum
	• measures distance from ball
	• : example lies inside the ball
	• : example on hull of ball
	• : example is training error


	One-Class SVM: Separating from the Origin
	Observation: [Schölkopf et al., 2000][Schölkopf et al., 2001]
	• For kernels depending on the distance between points, the dual is the same as for classificatio...
	• all training observations in the positive class (with slack)
	• one virtual negative example with and .

	max
	s. t.
	=> Equivalent for RBF kernel !

	Influence of C and RBF-Width s2
	small C large width s2 no outliers
	small C large width s2 some ouliers
	large C large width s2
	small C small width s2 (plots courtesy of B. Schoelkopf)

	Summary: SVM Novelty Detection
	• Find small region where most observations fall
	• One-Class SVM: separate observations from origin
	• Outliers (or new observations after shift in distribution) lie outside of region
	• Training problem similar to classification SVM
	Further work:
	• Extension to -SVMs and error bounds [Schölkopf et al., 2001] [Schölkopf et al., 2001]
	• SVM clustering [Ben-Hur et al., 2001]

	Applications:
	• Text classification [Manevitz & Yousef, 2001]
	• Topic detection


	SVM Regression
	Loss function:
	• -insensitive region with zero loss
	• linear loss beyond the “tube”


	Primal SVM Optimization Problems
	Classification:
	minimize
	s. t. and
	Regression:
	minimize
	s. t. and
	and

	Dual SVM Optimization Problems
	maximize
	s.t.
	Classification:
	• for
	• for
	• for

	Regression:
	• for and for
	• for and for
	• for and for


	Conclusions
	• What! How! Why! When! ...and that SVMs solve any other problem!
	Info
	• Chris Burges’ tutorial (Classification) http://www.kernel-machines.org/papers/Burges98.ps.gz
	• Smola & Schölkopf’s tutorial (Regression) http://www.kernel-machines.org/papers/tr-30-1998.ps.gz
	• Cristianini & Shawe-Taylor book: Introduction to SVMs, Cambridge University Press, 2000.
	• Schölkopf’ & Smola book: Learning with Kernels, MIT Press, 2002.
	• My dissertation: Learning to Classify Text Using Support Vector Machines, Kluwer.
	• Software: SVMlight for Classification, Regression, and Ranking http://svmlight.joachims.org/
	• General: http://www.kernel-machines.org
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