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Overview
What is an SVM?
� optimal hyperplane and soft-margin for inseparab
� handling non-linear rules and non-standard data u
How to use SVMs effectively and efficiently? 
How to train SVMs?
� decomposition algorithms / primal vs. dual / shrin
Why can SVMs learn?
� worst-case / average-case / relation to cross-valida
When do SVMs work well?
� properties of classification tasks - a case study in t
SVM-{ranking, novelty detection, regression, ...}
� ranking e.g. learning retrieval functions
� novelty detection: e.g. topic detection 
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riz, 1999]

ss Classifiers, 

][Schoelkopf & 

recision is 
nce bounds for 
What I will not (really) talk a

� SVMs in the transductive setting
[Vapnik, 1998][Joachims, 1999c][Bennet & Demi

� Kernel Principal Component Analysis
[Schoelkopf et al., 1998]

� connection to related methods (i.e. Gaussian Proce
Ridge Regression, Logistic Regression, Boosting)
[Cristianini & Shawe-Tylor, 2000][MacKay, 1997
Smola, 2002]

Warning: At some points throughout this tutorial, p
sacrificed for better intuition (e.g. uniform converge
SVMs).
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Text Classification

E.D. And F. MAN TO BUY INTO HONG KONG 
FIRM

The U.K. Based commodity house E.D. And F. Man
Ltd and Singapore�s Yeo Hiap Seng Ltd jointly 
announced that Man will buy a substantial stake in 
Yeo�s 71.1 pct held unit, Yeo Hiap Seng Enterprises
Ltd. Man will develop the locally listed soft drinks 
manufacturer into a securities and commodities 
brokerage arm and will rename the firm Man Pacifi
(Holdings) Ltd.

About a corportate acquisition?
YES
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 prediction error.

New Documents
Learning Text Classifier

Goal: 
� Learner uses training set to find classifier with low

Training Set

Learner Classifier

Real-World
Process
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 Vectors

ibutes: Words 
rd-Stems)

es: Occurrence-
uencies
Representing Text as Attribute

Attr
(Wo

Valu
Freq

==> The ordering of words is ignored!

graphics

baseball
specs

references
hockey
car
clinton

unix
space
quicktime
computer

.

.

.

0
3
0
1
0
0
0

1
0
2
0

From: xxx@sciences.sdsu.edu

Newsgroups: comp.graphics

Subject: Need specs on Apple QT

I need to get the specs, or at least a

for QuickTime. Technical articles from

be nice, too.

have on ...

very verbose interpretation of the specs,

on a Unix or MS-Dos system. I can’t

do much with the QuickTime stuff they

I also need the specs in a fromat usable

magazines and references to books would
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nal problems!

0,000
g Examples
Paradoxon of Text Classifica

 

... but this is not necessarily a problem!

Good News: SVMs can overcome this problem!
Bad News: This does not hold for all high-dimensio

30,000
Attributes

1
Trainin
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B Ohsumed 

62.4

61.5

56.7

63.4

71.6

ble from [Joachims, 2002]

sumed MeSH
0 categories
0000 training doc.
0000 test doc.
38000 features
Experimental Results

microaveraged precision/recall 
breakeven-point [0..100] Reuters WebK

Naive Bayes 72.3 82.0

Rocchio Algorithm 79.9 74.1

C4.5 Decision Tree 79.4 79.1

k-Nearest Neighbors 82.6 80.5

SVM 87.5 90.3

Ta

Reuters Newswire
� 90 categories
� 9603 training doc.
� 3299 test doc.
� ~27000 features

WebKB Collection
� 4 categories
� 4183 training doc.
� 226 test doc.
� ~38000 features

Oh
� 2
� 1
� 1
� ~
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Part 1 (a): What is an SVM? (

�prediction error vs. training err
�learning by empirical risk minimiz

�VC-Dimension and learnabilit
�linear classification rules

�optimal hyperplane
�soft-margin separation
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P x( )

P y x( )

ve Training
ptions about the 
sifiers
r of classifiers in 

raining data
fier with lowest 

M, decision tree

i ℜN y∈ i 1 1�{ , }∈
Generative vs. Discriminative T

Process:
� Generator: Generates descriptions  according to d
� Teacher: Assigns a value  to each description  b

x

y x

Discriminati
� make assum

set H of clas
� estimate erro

H from the t
� select classi

error rate
� example: SV

Generative Training
� make assumptions about the 

parametric form of .
� estimate the parameters of 

 from the training data
� derive optimal classifier using 

Bayes� rule
� example: naive Bayes

P x y,( )

P x y,( )

=> Training examples x1 y1,( ) … xn yn,( ), , P x y,( ) x∼



10

 is minimal:

.

P h( )

nction ∆:
t equal
ual

h)

y1) … xn yn,( ), ,
True (Prediction) Error

What is a �good� classification rule ?

What is the �optimal� Learner ?

Finds the classification rule  for which 

Problem:
 unknown. Known are training examples 

h

P h x( ) y≠( ) ∆ h x( ) y≠( ) P x y,( )d∫ Err= =

Loss fu
� 1 if no
� 0 if eq

L

hopt H∈ ErrP(

hopt minh H∈ ErrP h( ){ }arg=

P x y,( ) x1,(
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tion (ERM)

 error is minimal:

ples.

 Theory:
eralization error?
Principle: Empirical Risk Minimiza

Learning Principle:
Find the decision rule  for which the training

Training Error:

==> Number of misclassifications on training exam

h° H∈

h° minh H∈ ErrS h( ){ }arg=

ErrS h( ) 1
n
--- yi h xi( )≠( )∆

i 1=

n

∑=

Central Problem of Statistical Learning
When does a low training error lead to a low gen
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0=
When is it Possible to Lear

Definition [Consistency]: ERM is consistent for
� a hypothesis space H and
� independent of the distribution 
if and only if the sequence 

converges in probability.

<==> one-sided uniform convergence [Vapnik]

<==> VC-dimension of H is finite [Vapnik].

P x y,( )

ErrP h°( )
n ∞→
lim infh H∈ ErrP h( )=

ErrS h°( )
n ∞→
lim infh H∈ ErrP h( )=

P suph H∈ ErrP h( ) ErrS h( )�( ) ε>{ }
n ∞→
lim
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maximal number d 
ays using 

xd

+

+

+

+

...

-

Vapnik/Chervonenkis Dimen

Definition: The VC-dimension of H is equal to the 
of examples that can be split into two sets in all 2d w
functions from H (shattering).

x1 x2 x3 ...

h1 + + + ...

h2 - + + ...

h3 + - + ...

h4 - - + ...

... ... ... ... ...

hN - - - ...
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b+ 0>
Linear Classifiers

Rules of the Form: weight vector , threshold 

Geometric Interpretation (Hyperplane):

h x( ) sign wixi

i 1=

N

∑ b+ 1 if wixi

i 1=

N

∑
1� else








= =

w b

w

b
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le)

at 
6)

and
(x7) y

0 2 +1

1 1 -1

0 3 +1

1 1 -1

1 0 b=1

1� ) 0 0 2⋅+⋅ ] 1+

1� ) 1 0 1⋅+⋅ ] 1+
Linear Classifiers (Examp

D1: 

D2: 

Text Classification: Physics (+1) versus Receipes (-1)

ID nuclear 
(x1)

atom 
(x2)

salt
 (x3)

pepper 
(x4)

water
 (x5)

he
(x

D1 1 2 0 0 2

D2 0 0 0 3 0

D3 0 2 1 0 0

D4 0 0 1 1 1

w,b 2 3 -1 -3 -1 -

wixi

i 1=

7

∑ b+ 2 1 3 2 1�( ) 0 3�( ) 0 1�( ) 2 (+⋅+⋅+⋅+⋅+⋅[=

wixi

i 1=

7

∑ b+ 2 0 3 0 1�( ) 0 3�( ) 3 1�( ) 0 (+⋅+⋅+⋅+⋅+⋅[=
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ℜ2
VC-Dimension of Hyperplane

� Three points in  can be shattered with hyperpla

� Four points cannot be shattered.

=> Hyperplanes in  -> VCdim=3
General: Hyperplanes in  -> VCdim=N+1

ℜ2

ℜ2

ℜN
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he training error to 
Rate of Convergence

Question: After n training examples, how close is t
the true error?

With probablility  it hold for all :

� n number of training examples
� d VC-dimension of hypothesis space H

==>

ErrP h( ) ErrS h( )� Φ d n η, ,( )>

Φ d n,( ) 1
2
--- 4

d 2n
d

------ln 1+ 
  η

4
---ln�

n
---------------------------------------------=

η h H∈

ErrP h( ) ErrS h( ) Φ d n η,,( )+≤
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inimization
)

SVM Motivation: Structural Risk M

Idea: Structure on
hypothesis space.

Goal: Minimize upper bound on 
true error rate.

ErrP hi( ) ErrS hi( ) Φ VCdim H( ) n η,,(+≤

h*

Φ VCdim H( ) n η,,( )

ErrS hi( )

ErrP hi( )

VCdim(H)opt
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parable.
Optimal Hyperplane (SVM T

Assumption: The training examples are linearly se
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rplanes

rgin  and 

the number of 

δ

VC-Dimension of �thick� Hype

Lemma: The VCdim of hyperplanes  with ma
description vectors  is bounded by

The VC-dimension does not necessarily depend on 
attributes or the number of parameters!

w b,〈 〉
xi R≤

VCdim R2

δ2
------ 1+≤

δ δ
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 according to SRM
.

Maximizing the Margin

The hyperplane with maximum ma
<~ (roughly, see later) ~>

The hypothesis space with minimal VC-dimension
Support Vectors: Examples with minimal distance

δ
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rplane

1 1�{ , }

b] 0>

Distance δ of point x 
from hyperplane 
<w,b>:
 δ 1

w w⋅
---------------- w x⋅ b+[ ]=
Computing the Optimal Hype

Training Examples: 
Requirement 1: Zero training error!

Requirement 2: Maximum margin!
maximize δ, with 

=> Requirement 1 & Requirement 2: 
maximize δ, with 

x1 y1,( ) … xn yn,( ), , xi ℜN y∈ i ∈

y 1�=( ) w xi⋅ b+[ ] 0<⇒

y 1=( ) w xi⋅ b+[ ] 0>⇒






yi w xi⋅ +[⇔

δ mini
1

w w⋅
---------------- w xi⋅ b+[ ]=

i 1…n[ ] yi
1

w w⋅
---------------- w xi⋅ b+[ ] 

  δ≥∈∀
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em

b+ ]
 1

w w⋅
----------------≥

]

Primal Optimization Probl

maximize δ, with 

Set :
=> maximize , with 

Cancel:
=> maximize , with 

Minimize inverse and take square:

=> minimize , with 

i 1…n[ ] yi
1

w w⋅
---------------- w xi⋅ b+[ ] 

  δ≥∈∀

1

w w⋅
---------------- δ=

1

w w⋅
---------------- i 1…n[ ] yi

1

w w⋅
---------------- w xi⋅[

∈∀

1

w w⋅
---------------- i 1…n[ ] yi w xi⋅ b+[ ] 1≥[∈∀

P w b,( ) 1
2
---w w⋅=

y1 w x1⋅ b+[ ] 1≥

…

yn w xn⋅ b+[ ] 1≥
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Perceptron

euters-21578).

8 9 10

error.dat"
error.dat"
terror.dat
Example: Optimal Hyperplane vs. 

Train on 1000 pos / 1000 neg examples for �acq� (R

0

5

10

15

20

25

30

1 2 3 4 5 6 7

P
er

ce
nt

 T
ra

in
in

g/
T

es
tin

g 
E

rr
or

s

Iterations

Perceptron with eta=0.1

"perceptron_iter_train
"perceptron_iter_test

hard_margin_svm_tes
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ng samples!

 error.
Non-Separable Training Sam

� For some training samples there is no separating h
� Complete separation is suboptimal for many traini

=> minimize trade-off between margin and training
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r simultanously.

 and 

1
2
---w w C ξi

i 1=

n

∑+⋅=

b] 1 ξi�≥ ξi 0≥

ξi

ξj
Soft-Margin Separation

Idea: Maximize margin and minimize training erro

  
Soft Margin:
minimize 

       s. t.  

P w b ξ, ,( )

yi w xi⋅ +[

Hard Margin:
minimize 

        s. t. 

P w b,( ) 1
2
---w w⋅=

yi w xi⋅ b+[ ] 1≥

δ

Hard Margin
(separable)

Soft Margin
(training error)
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ration

errors.
argin and error.

ξi

0

ξi

j

Controlling Soft-Margin Sepa

�  is an upper bound on the number of training 
� C is a parameter that controls trade-off between m

Soft Margin: minimize 

                             s. t.   and 

P w b ξ, ,( ) 1
2
---w w C

i 1=

n

∑+⋅=

yi w xi⋅ b+[ ] 1 ξi�≥ ξi ≥

ξi∑

δ
ξ

Large C

Small C
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ing C

cessarily...

10

or.dat"
or.dat"

argin SVM
Example Reuters �acq�: Vary

Observation: Typically no local optima, but not ne

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1

P
er

ce
nt

 T
ra

in
in

g/
T

es
tin

g 
E

rr
or

s

C

"svm_trainerr
"svm_testerr

hard-m
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n-linear)

y

Part 1 (b): What is an SVM? (no

�quadratic programs and dualit
�properties of the dual

�non-linear classification rules
�kernels and their properties
�kernels for vectorial data

�kernels for non-vectorial data
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) 0≤

) 0=

αiαjHij

j 1=

n

∑
i 1=

n

∑; 0≥
Quadratic Program

� k linear inequality constraints
� m linear equality constraints
� Hessian  is pos. semi-definite 

=> convex, no local optima
�  is feasible, if it fulfills constraints

 minimize 

                   s.t.  

P w( ) kiwi
i 1=

n

∑
 
 
 
 

� 1
2
--- wiwjHij

j 1=

n

∑
i 1=

n

∑+=

wigi
1( )

i 1=

n

∑ 0≤ … wigi
k(

i 1=

n

∑

wihi
1( )

i 1=

n

∑ 0= … wihi
m(

i 1=

n

∑

H H i j,( )= α1…αn∀

α
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d sufficient 
Fermat Theorem

Given an unconstrained optimization problem

with  convex and differentiable, a necessary an
conditions for a point  to be an optimum is that 

 minimize 
        

P w( )

P w( )
w°

δP w°( )
δw

------------------ 0=
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i w( )
Lagrange Function

Given an optimization problem

the Lagrangian function is defined as

�  and  are called Lagrange Multipliers

 minimize 
         s.t.  
               

P w( )
g1 w( ) 0≤ … gk w( ) 0≤

h1 w( ) 0= … hm w( ) 0=

 
               

L w α β, ,( ) P w( ) αigi w( )

i 1=

k

∑ βih

i 1=

m

∑+ +=

α β
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 (w*x+b), 
 be an optimum are 

w( ) βihi w( )

i 1=

m

∑+
Lagrange Theorem

Given an optimization problem

with  convex and differentiable and all h affine
necessary and sufficient conditions for a point  to
the existence of  such that 

=> 

 minimize 
         s.t.  

P w( )
h1 w( ) 0= … hm w( ) 0=

P w( )
w°

β°

δL w° β°,( )

δw
--------------------------- 0= δL w° β°,( )

δβ
--------------------------- 0= L w β,( ) P=

L w° β,( ) L w° β°,( ) L w β°,( )≤ ≤
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rem

 affine, necessary 
imum are the 

0=

]

Karush-Kuhn-Tucker Theo
Given an optimization problem

with  convex and differentiable and all g and h
and sufficient conditions for a point  to be an opt
existence of  and  such that

Sufficient for convex QP: 

 minimize 
         s.t.  
               

P w( )
g1 w( ) 0≤ … gk w( ) 0≤

h1 w( ) 0= … hm w( ) 0=

P w( )
w°

α° β°

δL w° α° β°, ,( )

δw
------------------------------------- 0= δL w° α° β°, ,( )

δβ
-------------------------------------

αi°gi w°( ) 0 i, 1 … k, ,= =

gi w°( ) 0 i,≤ 1 … k, ,=

αi° 0 i,≥ 1 … k, ,=

max
β α 0≥,

minwL w α β, ,( )[
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m

 linear combination

i

iαjyiyj xi xj⋅( )

αi C≤
Dual Optimization Proble

Lemma: The solution  can always be written as a

of the training data.

==> positive semi-definite quadratic program

Primal OP: minimize 

                         s. t.   and 

P w b ξ, ,( ) 1
2
---w w C ξ

i 1=

n

∑+⋅=

yi w xi⋅ b+[ ] 1 ξi�≥ ξi 0≥

w°

w° αiyixi

i 1=

n

∑= αi 0≥

Dual OP: maximize 

                         s.t.  

D α( ) αi

i 1=

n

∑
 
 
 
  1

2
--- α

j 1=

n

∑
i 1=

n

∑�=

αiyi

i 1=

n

∑ 0= and 0 ≤
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 same solution. 

.

sult

x
neg

⋅ )

α)
Primal <=> Dual

Theorem: The primal OP and the dual OP have the
Given the solution  of the dual OP, 

is the solution of the primal OP.

Theorem: For any set of feasible points 

=> two alternative ways to represent the learning re
� weight vector and threshold 
� vector of �influences�  

αi°

w° αi°yixi

i 1=

n

∑= b° 1
2
--- w0 x

pos
⋅ w0+(=

P w b,( ) D(≥

w b,〈 〉

α1 … αn, ,
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ual OP

iαjyiyj xi xj⋅( )

i C≤

ξi

ξj
Properties of the Soft-Margin D

� typically single solution (i. e.  is unique)
� one factor  for each training example

� �influence� of single training example 
limited by C

�  <=> SV with 
�  <=> SV with 
�  else

� based exclusively on inner product 
between training examples

Dual OP: maximize 

                        s. t.  

D α( ) αi

i 1=

n

∑
 
 
 
  1

2
--- α

j 1=

n

∑
i 1=

n

∑�=

αiyi

i 1=

n

∑ 0= und 0 α≤

w b,〈 〉

αi

0 αi C< < ξi 0=

αi C= ξi 0>

αi 0=
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?

Non-Linear Problems

Problem:
� some tasks have non-linear structure
� no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules

==>
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pace

a degree two 

cc
Extending the Hypothesis S

Idea:

==> Find hyperplane in feature space!

Example: 

==> The separating hyperplane in features space is 
polynomial in input space.

Input Space

Feature Space

Φ

 a b c

a b c aa ab ac bb bc

Φ
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 (6 Attributes)
Example

Input Space:  (2 Attributes)
Feature Space: 

x x1 x2,( )=

Φ x( ) x1
2 x2

2, 2x, 1 2x2 2x1x2 1,, ,( )=
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egree p over N 
eature space!

y inner products => 

 calculating

ce explicitly!

j)
Kernels

Problem: Very many Parameters! Polynomials of d
attributes in input space lead to  attributes in f

Solution: [Boser et al., 1992] The dual OP need onl
Kernel Functions 

Example: For 

gives inner product in feature space.

We do not need to represent the feature spa

O Np( )

K xi xj,( ) Φ xi( ) Φ xj( )⋅=

Φ x( ) x1
2 x2

2, 2x, 1 2x2 2x1x2 1,, ,( )=

K xi xj,( ) xi xj 1+⋅[ ]
2

Φ xi( ) Φ x(⋅= =
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iyjK xi xj,( )

C≤

αiyiK xi x,( )
SV

b+




SVM with Kernels

Training:  maximize 

 s. t.  

Classification: For new example x  

New hypotheses spaces through new Kernels:
Linear: 
Polynomial: 
Radial Basis Functions: 
Sigmoid: 

D α( ) αi

i 1=

n

∑
 
 
 
  1

2
--- αiαjy

j 1=

n

∑
i 1=

n

∑�=

αiyi

i 1=

n

∑ 0= und 0 αi≤

h x( ) sign
xi ∈
∑




=

K xi xj,( ) xi xj⋅=

K xi xj,( ) xi xj 1+⋅[ ]
d

=

K xi xj,( ) xi xj�
2

σ2⁄�( )exp=

K xi xj,( ) γ xi xj�( ) c+( )tanh=
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f Degree 2

VM applet
Example: SVM with Polynomial o

Kernel: 
plot by Bell S

K xi xj,( ) xi xj 1+⋅[ ]
2

=
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ernel

VM applet
Example: SVM with RBF-K

Kernel: plot by Bell SK xi xj,( ) xi xj�
2

σ2⁄�( )exp=



45

or, 2000])
 n points . 
ces a Gram matrix

x1 … xn,,( )
What is a Valid Kernel?

Mercer�s Theorem (see [Cristianini & Shawe-Tayl
Theorem [Saitoh]:  Let X be a finite input space of
A function  is a valid kernel in X iff it produ

that is symmetric

and positive semi-definite

K xi xj,( )

Gij K xi xj,( )=

G GT=

α α
T
Gα αiαjK xi xj,( )

j 1=

n

∑
i 1=

n

∑= 0≥
 
 
 
 

∀



46

nels?

, , , 
th  a kernel over 

atrix. Then the 

.

X X ℜN⊆ a 0≥
K3
How to Construct Valid Ker

Theorem: Let  and  be valid Kernels over 
,  a real-valued function on ,  wi
, and  a summetric positive semi-definite m

following functions are valid Kernels

=> Construct complex Kernels from simple Kernels

K1 K2 X ×
0 λ 1≤ ≤ f X φ X ℜm→;
ℜm ℜm× K

K x z,( ) λK1 x z,( ) 1 λ�( )K2 x z,( )+=

K x z,( ) aK1 x z,( )=

K x z,( ) K1 x z,( )K2 x z,( )=

K x z,( ) f x( )f z( )=

K x z,( ) K3 φ x( ) φ z( ),( )=

K x z,( ) x
T
Kz=
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ata

, if the have many 

r the following 

ic programming.

a-r b-r

0 0

0

0 0

λ2

λ2 λ3
Kernels for Non-Vectorial D

Kernels for Sequences: Two sequences are similar
common and consecutive subsequences.
Example [Lodhi et al., 2002]: For  conside
features space

=> , efficient computation via dynam
=> Fisher Kernels [Jaakkola & Haussler, 1998]

c-a c-t a-t b-a b-t c-r

0 0 0

0 0 0 0

0 0 0

0 0 0 0 0

0 λ 1≤ ≤

φ cat( ) λ2 λ3 λ2

φ car( ) λ2 λ3

φ bat( ) λ2 λ2 λ3

φ bar( ) λ2

K car cat,( ) λ4=
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(I)

f length n

nce of common 

j1 2+

j1� 2+
Computing String Kernel 

Definitions:
� : sequences of length n over alphabet 
� : index sequence (sorted)
� : substring operator
� : range of index sequence
Kernel: Average range of common subsequences o

Auxiliary Function: Average range to end of seque
subsequences of length n

Σn Σ

i i1 … in, ,( )=

s i( )

r i( ) in i1� 1+=

Kn s t,( ) λ
in jn i1� �+

j u; s j( )=

∑
i u; s i( )=

∑
u Σn∈

∑=

Kd′ s t,( ) λ
s t i1�+

j u; s j( )=

∑
i u; s i( )=

∑
u Σn∈

∑=
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(II)

1� ])λ2

1])λ t j� 2+
Computing String Kernel 

Kernel:

Auxiliary:

Kn s t,( ) 0= if min s t,( ) n<( )

Kn sx t,( ) Kn s t,( ) K′n 1� s t 1…j[,(
j tj; x=
∑+=

K′0 s t,( ) 1=

K′d s t,( ) 0= if min s t,( ) d<( )

K′d sx t,( ) λK′d s t,( ) K′d 1� s t 1…j �[,(
j tj; x=
∑+=
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Data

lor, 2000]
opf & Smola, 2002]

 2002]
Other Kernels for Complex 

General information on Kernels:
� Introduction to Kernels [Cristianini & Shawe-Tay
� All the details on Kernels + Background [Schoelk

Kernels for specific structures:
� Diffusion Kernels for graphs [Kondor & Lafferty,
� Kernels for grammars [Collins & Duffy, 2002]
� Kernels for trees, lists, etc. [Gaertner et al., 2002]
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rnel

ar learner

o learner

)

Two Reasons for Using a Ke

(1) Turn a linear learner into a non-line
(e.g. RBF, polynomial, sigmoid)

(2) Make non-vectorial data accessible t

(e.g. string kernels for sequences
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gin size

rnel.
pace with minimal 

e .

1 1�{ , }

w b,〈 〉

αiyiK xi x,( ) b+




Summary
What is an SVM?

Given:
� Training examples 
� Hypothesis space according to kernel 
� Parameter C for trading-off training error and mar
Training:
� Finds hyperplane in feature space generated by ke
� The hyperplane has maximum margin in feature s

training error (upper bound ) given C.
� The result of training are . They determin

Classification: For new example  

x1 y1,( ) … xn yn,( ), , xi ℜN y∈ i ∈

K xi xj,( )

ξi∑
α1 … αn, ,

h x( ) sign
xi SV∈
∑




=
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ively and 

rs

ation
Part 2: How to use an SVM effect
efficiently?

�normalization of the input vecto
�selecting C

�handling unbalanced datasets
�selecting a kernel

�multi-class and multi-label classific
� selecting a training algorithm
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h SVMs

veness)

ctional data)

ernel parameters
 the particular QP
Design Decisions in Working wit

Setting up the learning task
�multi-class problems
�multi-label problems

Representation of the data (efficiency and effecti
�selecting features
�selecting feature values
�normalizing the data (directional vs. non-dire
�selecting a kernel

Selecting a good value for the parameter C and k
Selecting a training algorithm that is efficient for

�kernel SVM vs. linear SVM
�many sparse features vs. few dense features
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l Problems

ems 

problems

oblems

 et al., 2000]

nger, 2001]

y 1 1�,{ }∈

y i( ) 1 if y i=( )
1� else




=

)]

y i j,( ) 1 if y i=( )
1� if y j=( )




=

1 if i y∈( )
1� else




Handling Multi-Class / Multi-Labe

Standard classification SVM addresses binary probl
Multi-class classification: 

� one-against-rest decomposition into  binary 
� learn one binary SVM per class with 
� assign new example to 

� pairwise decomposition into  binary pr
� learn one binary SVM per class pair 
� assign new example by majority vote
� reducing number of classifications [Platt

� multi-class SVM [Weston & Watkins, 1998]
� multi-class SVM via ranking [Crammer & Si

Multi-label classification: 
� learn one binary SVM per class with 

y 1 … k, ,{ }∈

k

h i( )

y max h i( ) x([arg=

k k 1�( )

h i( )

y 1 … k, ,{ }⊆

h i( ) y i( ) =
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e?

 efficiency problem
 vectors
any rare features)

ic classification

ation
Which Features to Choos

Things to take into consideration:
� if features sparse, then dimensionality of space no

� computations based on inner product between
� consider frequency distribution of features (e.g. m

� Zipf distribution of words
� see TCat-model

� SVMs can handle redundancy in features
� bag-of-words representation redundant for top
� see TCat-model

� as few irrelevant features as possible
� stopword removal often helps in text classific
� see TCat-model
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es?

 value
ce the feature gets
 [0-100000]
es low (e.g. IDF)

e scale

 according to 

able or not
y stable training 

x
x

--------=
How to Assign Feature Valu
Things to take into consideration:
� importance of feature is monotonic in its absolute

� the larger the absolute value, the more influen
� typical problem: number of doors [0-5], price
� want relevant features large / irrelevant featur

� normalization to make features equally important
� by mean and variance: 
� by other distribution

� normalization to bring feature vectors onto the sam
� directional data: text classification
� by normalizing the length of the vector 

some norm
� changes whether a problem is (linearly) separ

� scale all vectors to a length that allows numericall

xnorm
x mean X( )�

var X( )
-------------------------------=

xnorm
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kernel value
 kernel value

ample polynomial 

gn yiyj( )
Selecting a Kernel

Things to take into consideration:
� kernel can be thought of as a similarity measure

� examples in the same class should have high 
� examples in different classes should have low
� ideal kernel: equivalence relation 

� normalization also applies to kernel
� relative weight for implicit features
� normalize per example for directional data

 
 

� potential problems with large numbers, for ex
kernel   for  large d

K xi xj,( ) si=

K xi xj,( )
K xi xj,( )

K xi xi,( ) K xj xj,( )
-----------------------------------------------=

K xi xj,( ) xi xj 1+⋅[ ]
d

=
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eter C

 of leave-one-out 
0][Joachims,2000]

en always separable
ble

Cdef
1

K xi xi,( )∑
---------------------------=

w xi⋅ b+[ ] 1 wixi�≥
Selecting Regularization Param
Common Method
� a reasonable starting point and/or default value is 
� search for C on a log-scale, for example 

� selection via cross-validation or via approximation
[Jaakkola&Haussler,1999][Vapnik&Chapelle,200

Note 
� optimal value of C scales with the feature values
� implicit slack variables via infrequent features

� if every example has one unique feature , th
� unique features  act like squared slack varia

C 10 4� Cdef … 104C, , def[ ]∈

xi

xi

minimize  s. t.  P w b ξ, ,( ) 1
2
---w w 1

2
--- wi

2

i 1=

n

∑+⋅= yi
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rs

.g. variance  in 

 typically depends 

ve search
validation

ficiency [Chapelle 

γ

Selecting Kernel Paramete

Problem
� results often very sensitive to kernel parameters (e

RBF kernel)
� need to simultaneously optimize C, since optimal C

on kernel parameters
Common Method
� search for combination of parameters via exhausti
� selection of kernel parameters typically via cross-
Advanced Approach
� avoiding exhaustive search for improved search ef

et al, 2002]
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sets

er than the number 

r recall

 more expensive

alue  

 and b] 1 ξi�≥ ξi 0≥

b′
Handling Unbalanced Data
Problem
� often the number of positive examples is much low

of negative examples
� SVM minimizes error rate 

=> always say �no� gives great error rate, but poo
Common Methods
� cost model that makes errors on positive examples

� change threshold  after training to some higher v

min  s.t. P w b ξ, ,( ) 1
2
---w w JC ξi

yi 1=
∑ C ξi

yi 1�=
∑+ +⋅= yi w xi⋅ +[

b

h x( ) sign αiyiK xi x,( )
xi SV∈
∑ b′+

 
 
 

=
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orithm
Joachims, 1999b]
ients
 small QPs
ase
Selecting an SVM Training Alg
SVMlight (also SVMtorch, mySVM, BSVM, etc.) [
� solve dual QP to obtain hyperplane from -coeffic
� iteratively decompose large QP into a sequence of
� handles kernels and treats linear SVM as special c
SMO [Platt, 1999]
� special case of working sets of size two 
� simple analytical solution of QP subproblems 
ASVM [Mangasarian & Musicant, 2000]
� restricted to linear SVMs with quadratic loss
� fast for low dimensional data 
Nearest Point Algorithm [Keerthi et al., 1999]
� restricted to quadratic loss
� compute distance between convex hulls 

α
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s?
Part 3: How to Train SVM

�efficiency of primal vs. dual
�decomposition algorithm
�working set selection
�optimality criteria

�caching
�shrinking
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ciently?

roblems:

 variables

 variables
ar inequality 
aints
ect use of kernels
ales 

1

O nN( )

ables
ar equality,  box 
aints
 kernels natural
cales 

2n

O n2( )
How can One Train SVMs Effi

 Solve one of the following quadratic optimization p

<= DUAL =>

=> positive semi-definite quadratic program with 

min 

       s. t.   and 

P w b ξ, ,( ) 1
2
---w w C ξi

i 1=

n

∑+⋅=

yi w xi⋅ b+[ ] 1 ξi�≥ ξi 0≥

�
�  line

constr
� no dir
� size sc

n N+ +

n

max

        s. t.  

D α( ) αi

i 1=

n

∑
 
 
 
  1

2
--- αiαjyiyjK xi xj,( )

j 1=

n

∑
i 1=

n

∑�=

αiyi

i 1=

n

∑ 0= and 0 αi C≤ ≤

�  vari
�  line

constr
� use of
� size s

n

1

n
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Osuna, et al.)!

k17

k27

k37

k47

k57

k67

k77

α1

α2

α3

α4

α5

α6

α7
Decomposition

Idea: Solve small subproblems until convergence (

max

1

1

1

1

1

1

1

T
α1

α2

α3

α4

α5

α6

α7

1
2
---

α1

α2

α3

α4

α5

α6

α7

T
k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

k71 k73 k73 k74 k75 k76

�
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Osuna, et al.)!

  nonzero features:

: 

k17

k27

k37

k47

k57

k67

k77

α1

α2

α3

α4

α5

α6

α7

f

O nqf( )
Decomposition

Idea: Solve small subproblems until convergence (

Time complexity: working set of size  and
� extracting subproblem: 
� solving subproblem: 
� updating large problem with result of subproblem

max

1

1

1

1

1

1

1

T
α1

α2

α3

α4

α5

α6

α7

1
2
---

α1

α2

α3

α4

α5

α6

α7

T
k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

k71 k73 k73 k74 k75 k76

�

2 q 100≤ ≤

O q2f( )

O q3( )
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ext?

inimizes

.
der mild 
What Working Set to Select N

Solution: Select subproblem with q variables that m

Efficiency: Selection linear in number of examples
Convergence: Proofs by Chi-Chen Lin / Keerthi un
assumptions.

V d( ) g α( )
T
d=

subject to

yTd 0=
di 0 if αi 0=( ),≥
di 0 if αi C=( ),≤

1� d 1≤ ≤
di 0≠{ } q=
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l Solution?
criterion:

 is optimal

1

How to Tell that we Found the Optima
Karush-Kuhn-Tucker conditions lead to the following 

<=>

maximize  
                                                                                 
                s. t.  

D α( ) αi

i 1=

n

∑
 
 
 
  1

2
--- αiαjyiyj xi xj⋅( )

j 1=

n

∑
i 1=

n

∑�=

αiyi

i 1=

n

∑ 0= and 0 αi C≤ ≤

i

αi 0=( ) yi αjyjK xi xj,( ) b+

j 1=

n

∑ 1≥⇒

0 α< i C<( ) yi αjyjK xi xj,( ) b+

j 1=

n

∑⇒ =

αi C=( ) yi αjyjK xi xj,( ) b+

j 1=

n

∑ 1≤⇒














∀
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m.
Demo

The Steps of Solving a 2-d Proble



70

g the Hessian!

t.

0

Caching

Observation: Most CPU-time is spent on computin
Idea: Cache kernel evaluations.

Result: A small cache leads to a large improvemen

0

50

100

150

200

250

300

1 10 100 1000 1000

fr
eq

ue
nc

y

rank by frequency (logscale)
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maller problem!
)f)

 iteration
ove it
Shrinking

Idea: If we knew the set of SVs, we could solve a s
(complexity per iteration from  to 

Algorithm:
O nqf( ) O sq(

� monitor the KKT-conditions in each
� if a variable is �stuck at bound�, rem
� do final optimality check
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iently?

ients
 small QPs
escent criterion
itions

nalytical solution 

ss => fast for low 
]
s => compute 
9]
Summary
How can One Train SVMs Effic

SVMlight (also SVMtorch, mySVM, BSVM, etc.)
� solve dual QP to obtain hyperplane from -coeffic
� iteratively decompose large QP into a sequence of
� select working set according to steepest feasible d
� check optimality using Karush-Kuhn-Tucker cond

Other training algorithms:
� SMO requires working set of size two => simple a

of QP subproblems [Platt, 1999]
� ASVM restricted to linear SVMs with quadratic lo

dimensional data [Mangasarian & Musicant, 2000
� Nearest Point Algorithm restricted to quadratic los

distance between convex hulls [Keerthi et al., 199

α
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k?

n error

out
Part 3: Why do SVMs Wor

�worst-case bounds
�bounds on the expected generalizatio

�leave-one-out estimation
�necessary criteria for leave-one-
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le!?

rP h( )

n yn, )
...classifies as well as possib

What is a �good� classification rule ?

What is a �good� learner ?
�Worst-Case� Learner:

�Average-Case� Learner:

h

P h x( ) y≠( ) ∆ h x( ) y≠( ) P x y,( )d∫ Er= =

L

P ErrP hL( ) ε>( ) η<

E ErrP hL( )( ) ErrP hL( ) P x1 y1,( )…P x(d∫=
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ner

e-Taylor et al,1996]

sification rule with 

.

 vacuous, 
SVMs as Worst-Case Lear

Goal: Guarantee of the form

Theorem:  [Shaw

So, if
� the training error  on sample S is low and
� the margin δ is large,
then with probablility  the SVM will output a clas
true error

 

Problem: For most practical problems this bound is
i.e. .

P ErrP hL( ) ε>( ) η<

P ErrP h( ) ErrS h( )� Φ R2

δ2
------ n η, ,

 
 
 

≥
 
 
  η<

ErrS h( )

η

ErrP hi( ) ErrS hi( ) Φ R2

δ2
------ n η,,

 
 
 

+≤

ErrP hi( ) 1≤
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rner

d by

e expected training 

C 1
2R2
---------≥

C 1
2R2
---------<
SVMs as Average-Case Lea

Theorem: The expected error of an SVM is bounde

with  the expected soft margin and  th

error bound [Joachims, 2001] [Vapnik, 1998].

Problem: The expectations are unknown.

E ErrP hSVM( )( )

2E R2

δ2
------

 
 
 

2CR2E ξi

n 1=

n

∑
 
 
 
 

+

n
-----------------------------------------------------------------≤

E ErrP hSVM( )( )

2E R2

δ2
------

 
 
 

2 CR2 1+( )E ξi

n 1=

n

∑
 
 
 
 

+

n
-------------------------------------------------------------------------------≤

E R2

δ2
------

 
 
 

E ξi

n 1=

n

∑
 
 
 
 
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esting.

d the estimate?

or estimate:

rloo h( ) 1
n
--- hi xi( ) yi=

i 1=

n

∑=
Leave-One-Out

Training set: 

Approach: Repeatedly leave one example out for t

Question: Is there a connection between margin an

train on test on

... ...

x1 y1,( ) x2 y2,( ) x3 y3,( ) … xn yn,( ), , , ,

x2 y2,( ) x3 y3,( ) x4 y4,( ) … xn yn,( ), , , , x1 y1,( )

x1 y1,( ) x3 y3,( ) x4 y4,( ) … xn yn,( ), , , , x2 y2,( )

x1 y1,( ) x2 y2,( ) x4 y4,( ) … xn yn,( ), , , , x3 y3,( )

x1 y1,( ) x2 y2,( ) x3 y3,( ) … xn 1� yn 1�,( ), , , , xn yn,( )

=> Err
       

Er
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rror of SVM

s, 2000] [Jaakkola 
ler, 1999] [Vapnik
lle, 2000]

leave-one-out error

OK
OK

ERROR
OK
OK
OK
OK
...
Necessary Cond. for Leave-One-Out E

Lemma: SVM [Joachim
& Hauss
& Chape

Input:
�  dual variable of example i
�  slack variable of example i
�  bound on length

hi xi( ) yi≠ 2αiR
2 ξi+ 1≥⇒

0.0
0.7
3.5
0.1
1.3
0.0
0.0
...

ραiR2 ξi+

Example:
αi

ξi

x R≤ =>

Available after training SVM 
on the full training data
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one out error�
Case 1: Example is no SV

αi 0=( ) ξi 0=( ) 2αiR
2 ξi+ 1<( ) no leave �⇒ ⇒ ⇒
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Influence 

ve one� out error�

αi
Case 2: Example is SV with Low 

αi
0.5

R2
------- C< <

 
 
 

ξi 0=( ) 2αiR
2

ξi+ 1<( ) no lea⇒ ⇒ ⇒

αj

αk
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Influence 

ve one� out error�
Case 2: Example is SV with Low 

αi
0.5

R2
------- C< <

 
 
 

ξi 0=( ) 2αiR
2

ξi+ 1<( ) no lea⇒ ⇒ ⇒
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ing Error
e one� out error�
Case 3: Example has Small Train
αi C=( ) ξi 1 2CR2�<( )∧ 2αiR

2 ξi+ 1<( ) no leav⇒ ⇒

αi C=

ξi
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ing Error
e one� out error�
Case 3: Example has Small Train
αi C=( ) ξi 1 2CR2�<( )∧ 2αiR

2 ξi+ 1<( ) no leav⇒ ⇒
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 splits:

ly equal
ip wheat corn

AvgEstimatedError

AvgHoldoutError

Default
Experiment: Reuters-215

� 6451 training examples 
� 6451 test examples for holdout testing
� ~27,000 features
Average error estimate over 10 random training/test

=> small bias, variance of estimators is approximate
earn acq money−fx grain crude trade interest sh

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
rr

or
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or SVMs

rrors.

PU-Time (sec)

11.1 32.3

78.5 235.4

433.0 1132.3

loo;

1= ρ 2=
Fast Leave-One-Out Estimation f

Lemma: Training errors are always leave-out-out e
Algorithm: 

Experiment:

Training Retraining Steps (%) C

Examples

Reuters 6451 0.20% 0.58%

WebKB 2092 6.78% 20.42%

Ohsumed 10000 1.07% 2.56%

� ( ) = train_SVM(X,0,0);
� for all training examples, do

� if  then loo++;
� else if ( ) then loo=
� else  train_SVM( ); 

R α ξ, ,

ξi 1>

ραiR
2 ξi+ 1<

Xi α ξ, ,

ρ 1= ρ 2= ρ
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xi( ) yi=

R

2αiR
2 ξi+

R2 R2

δ2
------≤
Estimated Error of SVM

Leave-One-Out Error Estimate:  

For general SVMs:

=> 

For separable problems:

=> 

Errloo h( ) 1
n
--- hi

i 1=

n

∑=

hi xi( ) yi≠ 2αiR
2 ξi+ 1≥⇒ x ≤

Errloo h( ) 1
n
--- i 2αiR

2 ξi+ 1≥
 
 
  1

n
---

i 1=

n

∑≤ ≤

hi xi( ) yi≠ αiR
2 1≥⇒ x R≤

Errloo h( ) 1
n
--- i αiR

2 1≥
 
 
  1

n
--- αi

i 1=

n

∑≤ ≤
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rage) is low and
rge

 error rate with 

error rate on 

h the (leave-one-
Summary
Why do SVMs Work?

If
� the training error  (on the sample S / on ave
� the margin δ/R (on the sample S / on average) is la
then 
� the SVM has learned a classification rule with low

high probablility (worst-case).
� the SVM learns classification rules that have low 

average.
� the SVM has learned a classification rule for whic

out) estimated error rate is low.

ErrS h( )
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 Well?

apnik, 1998]
, 1997]
is et al., 1998]

s?
lained?
VMs successfully?
Part 4: When do SVMs Work

Successful Use:
�Optical Character Recognition (OCR) [V

�Face Recognition, etc. [Osuna et al.
�Text Classification [Joachims, 1997] [Duma

�...
Open Questions:

What characterizes these problem
How can the good performance be exp

What are �sufficient conditions� for using (linear) S
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s

 prediction error.

New Documents
Learning Text Classifier

Goal: 
� Learner uses training set to find classifier with low

Training Set

Learner Classifier

Real-World
Process
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s

 prediction error.

 on every task.

New Documents
Learning Text Classifier

Goal: 
� Learner uses training set to find classifier with low
Obstacle:
� No Free Lunch: There is no learner that does well

Training Set

Learner Classifier

Real-World
Process
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essfully

New Documents

 error rate

s of the process.
Learning Text Classifiers Succ

Training Set

Learner Classifier

Real-World
Process

The learner produces a classifier with low
<=>

The properties of the learner fit the propertie
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ccessfully

New Documents

 error rate

s of the process.
Learning SVM Text Classifiers Su

Training Set

Learner Classifier

Real-World
Process

The learner produces a classifier with low
<=>

The properties of the learner fit the propertie

SVM

SVM
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ectors

tures: words 
rdstems)

es: occurrence 
uency
Representing Text As Feature V

Fea
(wo

Valu
freq
  

==> Ignore ordering of words.

graphics

baseball
specs

references
hockey
car
clinton

unix
space
quicktime
computer

.

.

.

0
3
0
1
0
0
0

1
0
2
0

From: xxx@sciences.sdsu.edu

Newsgroups: comp.graphics

Subject: Need specs on Apple QT

I need to get the specs, or at least a

for QuickTime. Technical articles from

be nice, too.

have on ...

very verbose interpretation of the specs,

on a Unix or MS-Dos system. I can’t

do much with the QuickTime stuff they

I also need the specs in a fromat usable

magazines and references to books would
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n

0,000
g examples
Paradox of Text Classificatio

30,000
attributes

1
trainin
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B Ohsumed 

62.4

61.5

56.7

63.4

71.6

[Joachims, 2002]

sumed MeSH
0 categories
0000 training doc.
0000 test doc.
38000 features
Experimental Results

microaveraged precision/recall 
breakeven-point [0..100] Reuters WebK

Naive Bayes 72.3 82.0

Rocchio Algorithm 79.9 74.1

C4.5 Decision Tree 79.4 79.1

k-Nearest Neighbors 82.6 80.5

SVM 87.5 90.3

Reuters Newswire
� 90 categories
� 9603 training doc.
� 3299 test doc.
� ~27000 features

WebKB Collection
� 4 categories
� 4183 training doc.
� 226 test doc.
� ~38000 features

Oh
� 2
� 1
� 1
� ~
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lassification?

th SVMs:

low
 

of
SVM

E Errn hSVM( )( )
Why Do SVMs Work Well for Text C

A statistical learning model of text classification wi

text 
classification 

task

5 
properties

=> 
model

low
 

and
R2 δ2⁄

ξi∑
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pected Error

 is bounded by

 is the

C 1
ρR2
---------≥

C 1
ρR2
---------<

ξi

1=

1+






Margin/Loss Based Bound on the Ex

Theorem: The expected error of a soft margin SVM

Where  is the expected soft margin and 

expected training loss on training sets of size .

E Errn hSVM( )( )

ρE R2

δ2
------

 
 
 

ρCR2E ξi

n 1=

n 1+

∑
 
 
 
 

+

n 1+
-----------------------------------------------------------------≤

E Errn hSVM( )( )

ρE R2

δ2
------

 
 
 

ρ CR2 1+( )E ξi

n 1=

n 1+

∑
 
 
 
 

+

n 1+
-------------------------------------------------------------------------------≤

E R2

δ2
------

 
 
 

E

n

n

∑





n 1+
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low
 

of
SVM

E Errn hSVM( )( )
First Step Completed

text 
classification 

task

5 
properties

=> 
model

low
 

and
R2 δ2⁄

ξi∑

?
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igh Dimension

)
 whole language 

istinct Words
(Sparsity)

74
(0.27%)

100
(0.26%)

130
(0.34%)
Properties 1+2: Sparse Examples in H

� High dimensional feature vectors (30,000 features
� Sparse document vectors: only a few words of the

occur in each document

Training 
Examples

Number 
of 

Features
D

Reuters 
Newswire Articles

9,603 27,658

Ohsumed 
MeSH Abstracts

10,000 38,679

WebKB 
WWW-Pages

3,957 38,359
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f Words

he�, �and�, �of�, 

AL END TALKS

 and Gas Corp subsidiary and 
as Co have mutually agreed 
eir talks on Consolidated�s 
pollo Gas Co from Texas 

iven.

 BUY INTO HONG KONG 

odity house E.D. And F. 
e�s Yeo Hiap Seng Ltd jointly 
ill buy a substantial stake in 

it, Yeo Hiap Seng Enterprises 
 the locally listed soft drinks 
curities and commodities 
l rename the firm Man 
.

Property 3: Heterogeneous Use O

No pair of documents shares any words, but �it�, �t
�for�, �an�, �a�, �not�, �that�, �in�.

MODULAIRE BUYS BOISE HOMES PROPERTY

Modulaire Industries said it acquired the design 
library and manufacturing rights of privately-owned 
Boise Homes for an undisclosed amount of cash. 
Boise Homes sold commercial and residential 
prefabricated structures, Modulaire said.

USX, CONS. NATUR

USX Corp�s Texas Oil
Consolidated Natural G
not to pursue further th
possible purchase of A
Oil. No details were g

JUSTICE ASKS U.S. DISMISSAL OF TWA 
FILING

The Justice Department told the Transportation 
Department it supported a request by USAir Group 
that the DOT dismiss an application by Trans World 
Airlines Inc for approval to take control of USAir. 
``Our rationale is that we reviewed the application 
for control filed by TWA with the DOT and 
ascertained that it did not contain sufficient 
information upon which to base a competitive 
review,�� James Weiss, an official in Justice�s 
Antitrust Division, told Reuters.

E.D. And F. MAN TO
FIRM

The U.K. Based comm
Man Ltd and Singapor
announced that Man w
Yeo�s 71.1 pct held un
Ltd. Man will develop
manufacturer into a se
brokerage arm and wil
Pacific (Holdings) Ltd
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ndancy
Property 4: High Level Of Redu

=> Few features are irrelevant!
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�

 times.fi
k

c i+( )Θ
-------------------=
Property 5: �Zipf�s Law

Zipf�s Law: In text, the i-th frequent word occurs 
=> Most words occur very infrequently!
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l

t sets of features. 

currences from the 
Text Classification Mode

Definition: For the TCat-concept there are  disjoin

Each positive (negative) example contains  ( ) oc
 features in set .

TCat p1 n1 f1[ ] … ps ns fs[ ], ,( )

s

pi ni
fi i

Example: TCat

20 20 100[ ]

4 1 200[ ]

1 4 200[ ]

5 5 600[ ]

9 1 3000[ ]

1 9 3000[ ]

10 10 4000[ ] 
 
 
 
 
 
 
 
 
 
 
 
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rse�
TCat-Concept for WebKB �Cou

TCat

77 29 98[ ] 4 21 52[ ],

16 2 431[ ] 1 12 341[ ],

9 1 5045[ ] 1 21 24276[ ],

169 191 8116[ ] 
 
 
 
 
  high frequency

medium frequency
low frequency
rest
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at-Concepts
frequency
um frequency
requency

h frequency
dium frequency

frequency
t

high frequency
medium frequency
low frequency
rest
Real Text Classification Tasks as TC

Reuters �Earn�: 

Webkb �Course�: 

Ohsumed �Pathology�:

TCat

33 2 65[ ] 32 65 152[ ],

2 1 171[ ] 3 21 974[ ],

3 1 3455[ ] 1 10 17020[ ],

78 52 5821[ ] 
 
 
 
 
  high

medi
low f
rest

TCat

77 29 98[ ] 4 21 52[ ],

16 2 431[ ] 1 12 341[ ],

9 1 5045[ ] 1 21 24276[ ],

169 191 8116[ ] 
 
 
 
 
  hig

me
low
res

TCat

2 1 10[ ] 1 4 22[ ],

2 1 92[ ] 1 2 94[ ],

5 1 4080[ ] 1 10 20922[ ],

197 190 13459[ ] 
 
 
 
 
 
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low
 

of
SVM

E Errn hSVM( )( )
Second Step Completed

text 
classification 

task

5 
properties

=> 
model

low
 

and
R2 δ2⁄

ξi∑

?
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cepts

concepts there is 
 margin  at least

has a margin of at 

δ2

i
2

fi
----

i
2

fi
----

ipi
fi

--------
The Margin  of TCat-Con

Lemma 1: For -
always a hyperplane passing through the origin with

Example: The previous example WebKB �course� 
least 

δ2

TCat p1 n1 f1[ ] … ps ns fs[ ], ,( )

δ2 ad b2�
a 2b d+ +
-------------------------≥ with

a
p
-

i 1=

s

∑=

d
n
-

i 1=

s

∑=

b
n
-

i 1=

s

∑=

δ2 0.23≥
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ectors

cument with  

 length of the 

l

k
i)Θ

----------- l=
The Length  of Document V

Lemma 2: If the ranked term frequencies  in a do
words have the form of the generalized Zipf�s Law

based on their frequency rank , then the Euclidean
document vector  is bounded by

Example: For WebKB �course� with

follows that .

R2

fi

fi
k

c i+( )Θ
-------------------=

i
x

x k
c i+( )Θ

------------------- 
  2

i 1=

d

∑≤ with
c +(

--------

i 1=

d

∑

fi
470000
5 i+( )1.25

------------------------=

R2 1900≤
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ication

R2

δ
2

------




CR2E ξi
i 1=

n 1+

∑
 
 
 
 

+

n 1+
------------------------------------------------------

869 9

2082 33

458 0

405 2

378 0

R2 δ2⁄ ξi∑
, , and  for Text ClassifR2 δ2 ξi∑

Reuters Newswire Stories
� 10 most frequent categories
� 9603 training examples
� 27658 attributes E ErrP hSVM( )( )

E




-----≤

 

earn 1143 0

acq 1848 0

money-fx 1489 27

grain 585 0

crude 810 4

R2 δ2⁄ ξi∑
trade

interest

ship

wheat

corn
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pts

oncepts and 
 Zipf�s Law 
f an unbiased 

pi
2

fi
-----

1=

s

∑

ni
2

fi
-----

1=

s

∑

nipi
fi

---------

1=

s

∑

k
c i+( )Θ

------------------- 
  2

1=

d

∑

Learnability of TCat-Conce

Theorem: For -c
documents with  words that follow the generalized

 the expected generalization error o
SVM after training on  examples is bounded by

TCat p1 n1 f1[ ] … ps ns fs[ ], ,( )
l

fi k c i+( )Θ⁄=
n

E Errn hSVM( )( ) R2

n 1+
------------ ad b2�

a 2b d+ +
-------------------------≤ with

a

i

=

d

i

=

b

i

=

R2

i

≤
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iments

asy� tasks
retrieval heuristics 

d 
n 
te

Error Rate in 
Experiment

1.3%

4.4%

23.1%
Comparison Theory vs. Exper

� Model can differentiate between �difficult� and �e
� Predicts and reproduces the effect of information 

(e.g. TFIDF-weighting)

Learning Curve Bound
Predicte
Bound o

Error Ra

Reuters 
�earn� 1.5%

WebKB
�course� 11.2%

Ohsumed
�pathology� 94.6%

E Errn hSVM( )( ) 138
n 1+
------------≤

E Errn hSVM( )( ) 443
n 1+
------------≤

E Errn hSVM( )( ) 9457
n 1+
------------≤
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or a linear SVM?

high frequency
medium frequency
low frequency

high frequency
medium frequency
low frequency

high frequency
medium frequency
low frequency
Sensitivity Analysis

What makes a text classification problem suitable f
High Redundancy:

High Discriminatory Power:

High Frequency:

TCat
40 40 50[ ]

25 5 1000[ ] 5 25 1000[ ],

30 30 30000[ ] 
 
 
 

TCat
40 40 50[ ]

15 0 500[ ] 0 15 500[ ] 15 15 1000[ ], ,

30 30 30000[ ] 
 
 
 

TCat
16 4 10[ ] 4 16 10[ ] 20 20 30[ ], ,

30 30 2000[ ]

30 30 30000[ ] 
 
 
 
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ide?

cation tasks with 

ssification tasks

s

low

 of
SVM

E Errn hSVM( )( )
What does this Model Prov

Connects the statistical properties of text classifi
generalization error of SVM!

� Explains the behavior of (linear) SVMs on text cla

� Gives guideline for when to apply (linear) SVMs

� Provides formal basis for developing new method

text 
classification 

task
5 

properties

low
 

and
R2 δ2⁄

ξi∑=>
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 Well?

cept with

r [Joachims, 2002].
Summary
When do (Linear) SVMs Work

Intuition: If the problem can be cast as a TCat-con
� high redundancy,
� strongly discriminating features
� particularly in the high frequency region
then linear SVMs achieve a low generalization erro
Assumptions and Restrictions:
� no noise (attribute and classification)
� no variance (only �average� examples)
� only upper bounds, no lower bounds
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problem
erences
Part 3: SVM-X?

�common elements of SVMs for other 
�learning ranking functions from pref

�novelty and outlier detection
�regression
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VMs

 and with linear 

1998]

y

r prediction rules

ξi
The Receipe for Cooking an S

Ingredients:
� linear prediction rules 
� training problem with objective a la 

constraints (=> quadratic program)
Stirr and add flavor: 
� Classification
� Ranking [Herbrich et al., 2000][Joachims, 2002c]
� Novelty Detection [Schoelkopf et al., 2000]
� Regression [Vapnik, 1998][Smola & Schoelkopf, 
That makes:
� nice SVM with global optimal solution and dualit
� often sparse solution (#SVs < n)
� Hint: garnish the dual with kernel to get non-linea

h x( ) w x b+⋅=

min w w C∑+⋅
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282,000 hits
SVM Ranking

Query:
� �Support Vector Machine�

Goal:
� �rank the document I want 

high in the list�
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hrough

 link b ranked 
nk(a).
 6)

ences
tml
ES ...

vt.html
Training Examples from Clickt

Assumption: If a user skips a link a and clicks on a
lower, then the user preference reflects rank(b) < ra
Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 <

Ranking Presented to User:
1. Kernel Machines 

http://svm.first.gmd.de/
2. Support Vector Machine

http://jbolivar.freeservers.com/
3. SVM-Light Support Vector Machine 

http://ais.gmd.de/~thorsten/svm light/
4. An Introduction to Support Vector Machines

http://www.support-vector.net/
5. Support Vector Machine and Kernel ... Refer

http://svm.research.bell-labs.com/SVMrefs.h
6. Archives of SUPPORT-VECTOR-MACHIN

http://www.jiscmail.ac.uk/lists/SUPPORT...
7. Lucent Technologies: SVM demo applet 

http://svm.research.bell-labs.com/SVT/SVMs
8. Royal Holloway Support Vector Machine 

http://svm.dcs.rhbnc.ac.uk/
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hrough

 link b ranked 
nk(a).
 6)

ences
tml
ES ...

vt.html
Training Examples from Clickt

Assumption: If a user skips a link a and clicks on a
lower, then the user preference reflects rank(b) < ra
Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 <

Ranking Presented to User:
1. Kernel Machines 

http://svm.first.gmd.de/
2. Support Vector Machine

http://jbolivar.freeservers.com/
3. SVM-Light Support Vector Machine 

http://ais.gmd.de/~thorsten/svm light/
4. An Introduction to Support Vector Machines

http://www.support-vector.net/
5. Support Vector Machine and Kernel ... Refer

http://svm.research.bell-labs.com/SVMrefs.h
6. Archives of SUPPORT-VECTOR-MACHIN

http://www.jiscmail.ac.uk/lists/SUPPORT...
7. Lucent Technologies: SVM demo applet 

http://svm.research.bell-labs.com/SVT/SVMs
8. Royal Holloway Support Vector Machine 

http://svm.dcs.rhbnc.ac.uk/
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 (weak ordering)D×
Learning to Rank
Assume:
� distribution of queries P(Q)
� distribution of target rankings for query P(R | Q)
Given:
� collection D of m documents
� i.i.d. training sample  
Design:
� set of ranking functions F, with elements f:
� loss function 
� learning algorithm
Goal:
� find  with minimal 

q1 r1,( ) … qn rn,( ), ,

Q PD→

l ra rb,( )

f° F∈ RP f( ) l f q( ) r,( ) P q r,( )d∫=
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ngs

9], [Crammer & 
A Loss Function for Ranki

For two orderings  and , a pair  is 
� concordant, if  and  agree in their ordering

P = number of concordant pairs
� discordant, if  and  disagree in their ordering

Q = number of discordant pairs
Loss function: [Wong et al., 88], [Cohen et al., 199
Singer, 01], [Herbrich et al., 98] ...

Example:

=> discordant pairs (c,b), (d,b) =>  

ra rb di dj≠

ra rb

ra rb

l ra rb,( ) Q=

ra a c d b e f g h, , , , , , ,( )=

rb a b c d e f g h, , , , , , ,( )=

l ra rb,( ) 2=
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ngs

9], [Crammer & 
A Loss Function for Ranki

For two orderings  and , a pair  is 
� concordant, if  and  agree in their ordering

P = number of concordant pairs
� discordant, if  and  disagree in their ordering

Q = number of discordant pairs
Loss function: [Wong et al., 88], [Cohen et al., 199
Singer, 01], [Herbrich et al., 98] ...

Example:
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ra rb di dj≠

ra rb

ra rb

l ra rb,( ) Q=

ra a c d b e f g h, , , , , , ,( )=

rb a b c d e f g h, , , , , , ,( )=

l ra rb,( ) 2=
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ngs

9], [Crammer & 
A Loss Function for Ranki

For two orderings  and , a pair  is 
� concordant, if  and  agree in their ordering

P = number of concordant pairs
� discordant, if  and  disagree in their ordering

Q = number of discordant pairs
Loss function: [Wong et al., 88], [Cohen et al., 199
Singer, 01], [Herbrich et al., 98] ...

Example:

=> discordant pairs (c,b), (d,b) =>  

ra rb di dj≠

ra rb

ra rb

l ra rb,( ) Q=

ra a c d b e f g h, , , , , , ,( )=

rb a b c d e f g h, , , , , , ,( )=

l ra rb,( ) 2=



124

tion

 of document pairs
r°, )





----------

i

1 


 2
Interpretation of Loss Func

Notation:
� P concordant pairs
� Q discordant pairs

Kendall�s Tau:  total ordering, uniform sampling

Average Precision:  ordering with two ranks

r°

τ r r°,( ) P Q�
P Q+
-------------- 1 2Q

m
2 

 
 
--------------� 1 2l r(

m
2




----------�= = =

r°

AvgPrec r r°,( ) l r r°,( ) R 1+
2 

 
 

+
1�

i =

R

∑





≥
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ook Like?
sv( , ) with query 

)
lines of )

q di

di

1
2

3

4

f (q)1
What does the Ranking Function L
Sort documents  by their �retrieval status value� r

 [Fuhr, 89]:
rsv( , ) =     * #(of query words in title of 

+  * #(of query words in H1 head
...
+  * PageRank( )

               =  Φ( , ).

Select F as: 

di
q

q di w1 di
w2

wN di
w q di

2f (q)

di dj>

⇔
di dj,( ) fw q( )∈

⇔

wΦ q di,( ) wΦ q dj,( )>
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ar Ranking 

n S:

)

)

ξ1 i j, , )

ξn i j, , )
Minimizing Training Loss For Line
Functions

Given:
� training sample 
Zero training loss on S:

Minimize (bound on) training loss (total ordering) o

S q1 r1,( )= … qn rn,( ), ,

di dj,( ) r1∈ wΦ q1 di,( ) wΦ q1 dj,(>;∀

…

di dj,( ) rn∈ wΦ qn di,( ) wΦ qn dj,(>;∀

min ξl i j, ,∑
di dj,( ) r1∈ wΦ q1 di,( ) wΦ q1 dj,( ) 1 �+≥(;∀

…

di dj,( ) rn∈ wΦ qn di,( ) wΦ qn dj,( ) 1 �+≥(;∀
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chine

ξ1 i j, , )

ξn i j, , )

1
2

3

4
δ

R

f(q)
Ranking Support Vector Ma

Optimization Problem (primal):

Properties:
� minimize trade-off between training 

loss and margin size δ = 1 / ||w||
� quadratic program, similar to 

classification SVM (=> SVMlight)
� convex => unique global optimum
� radius of ball containing the training 

points R

min 1
2
---w w C ξl i j, ,∑+⋅

di dj,( ) r1∈ wΦ q1 di,( ) wΦ q1 dj,( ) 1 �+≥(;∀
…

di dj,( ) rn∈ wΦ qn di,( ) wΦ qn dj,( ) 1 �+≥(;∀
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 ...

- - - - - - - - - - -
 - - - - - - - - - +
n-relevant)

nd finite)

3

2 3
How is this different from

... classification?
f1(q): - - + - - - - - - - - - - - - - - - - - - - - - - - - - 
f2(q): - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

=> both have same error rate (always classify as no
=> very different rank loss
... ordinal regression?

Training set , with Y ordinal (a
=> ranks need to be comparable between examples

S x1 y1,( )= … xn yn,( ), ,

ordinal regression

ranking

1
1

2
2

3

1 2 3
1
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bout ordering from

 50 random 

 4), (7 < 5), (7 < 6)

ine 
ight/
r Machines

nel ... References
/SVMrefs.html
-MACHINES ...
PPORT...

o applet 
/SVT/SVMsvt.html
Machine 
Experiment Setup

Collected training examples with partial feedback a
� user skipping links

� clicked on document should be ranked higher than
documents 
=> 

=> (3 < 2) and (7 < 2), (7 <

Ranking Presented to User:
1. Kernel Machines 

http://svm.first.gmd.de/
2. Support Vector Machine

http://jbolivar.freeservers.com/
3. SVM-Light Support Vector Mach

http://ais.gmd.de/~thorsten/svm l
4. An Introduction to Support Vecto

http://www.support-vector.net/
5. Support Vector Machine and Ker

http://svm.research.bell-labs.com
6. Archives of SUPPORT-VECTOR

http://www.jiscmail.ac.uk/lists/SU
7. Lucent Technologies: SVM dem

http://svm.research.bell-labs.com
8. Royal Holloway Support Vector 

http://svm.dcs.rhbnc.ac.uk/

S q1 r′1,( )= … qn r′n,( ), ,
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s Φ(q,d)
Query/Document Match Feature

Rank in other search engine: 
� Google, MSNSearch, Altavista, Hotbot, Excite
Query/Content Match:
� cosine between URL-words and query
� cosine between title-words and query
� query contains domain-name

Popularity Attributes:
� length of URL in characters
� country code of URL
� domain of URL
� word �home� appears in title
� URL contains �tilde�
� URL as an atom
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rve

70 80

NSearch
Google

Learning
Experiment I: Learning Cu

Training examples: preferences from 112 queries

0

5

10

15

20

25

0 10 20 30 40 50 60

P
re

di
ct

io
n 

E
rr

or
 (%

)

Number of Training Examples

MS
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ta, Hotbot, Excite)

niversity of 

test ranking 
function

=> 139 queries

December 2nd
Experiment II

Experiment Setup:
� meta-search engine (Google, MSNSearch, Altavis
� approx. 20 users
� machine learning students and researchers from U

Dortmund AI Unit (Prof. Morik)
� asked to use system as any other search engine
� display title and URL of document

October 31st November 20th

collected training data
=> 260 training queries 
(with at least one click)

trained 
Ranking 

SVM
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SNSearch

 5 search engines

ie Total

69

29

41
sers, as of 2nd of December
Experiment: Learning vs. Google/M

Toprank: rank by increasing mimium rank over all

=> Result: Learned > Google
Learned > MSNSearch
Learned > Toprank

Ranking A Ranking B A better B better T

Learned Google 29 13 27

Learned MSNSearch 18 4 7

Learned Toprank 21 9 11
~20 u
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f the 5 search engines

es
Learned Weights

weight feature

0.60 cosine between query and abstract

0.48 ranked in top 10 from Google

0.24 cosine between query and the words in the URL

0.24 document was ranked at rank 1 by exactly one o

...

0.17 country code of URL is �.de�

0.16 ranked top 1 by HotBot

...

-0.15 country code of URL is �.fi�

-0.17 length of URL in characters

-0.32 not ranked in top 10 by any of the 5 search engin

-0.38 not ranked top 1 by any of the 5 search engines
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g

 higher than B�
traints
ion
ce from hyperplane
Summary: SVM Rankin

� An SVM method for learning ranking functions
� Training examples are rankings 

=> pairwise preferences like �A should be ranked
� Turn training examples into linear inequality cons
� Results in quadratic program similar to classificat
� Rank new examples by sorting according to distan

Applications:
� personalizing search engines
� tuning retrieval functions in XML intranets 
� recommender systems
� betting on horses
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tion P(X), i.e.

, or the distribution 

xn
SVM Novelty/Outlier Detec

Assume:
� distribution of feature vectors P(X)
Goal: [Schölkopf et al., 1995] [Tax & Duin, 2001]
� find the region R of -support for the distribu

� keep the volume of R as small as possible
=> new points falling outside of R are either outliers
must have changed.
Problem:
� estimate R from unlabeled oberservations 

1 ε�( )

P x R∈( ) 1 ε�≥

x1 …, ,
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e Regions

sub-optimal
Example: Small and Large Volum

Assume that we know the distribution P(X).
All following are regions with :

trivial optimal

R

P(X)

P x R∈( ) 1 ε�≥
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 to P(X).
001]
ervations

xi) αiαjK xi xj,( )

j 1=

n

∑
i 1=

n

∑�

nd 0 αi C≤ ≤
Find Region using Examp

Problem: 
� P(X) cannot be observed directly.
Given:
� training oberservations  drawn according
Approach: [Schoelkopf et al., 1995][Tax & Duin, 2
� find smallest ball that includes (most) training obs

�  is the center of the ball,  is its radius.

x1 … xn, ,

min 

 s. t.   
         

P c r ξ, ,( ) r2 C ξi

i 1=

n

∑+=

c xi�[ ]
2

r2 ξi+≤

ξi 0≥

max

  s. t. 

D α( ) αiK xi,(

i 1=

n

∑=

αi

i 1=

n

∑ 1= a

Primal: Dual:

c r
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xi) αiαjK xi xj,( )

j 1=

n

∑
i 1=

n

∑�

nd 0 αi C≤ ≤

r
c

i

Properties of the Primal/D

Properties:
� convex => global optimum
�  measures distance from ball
� : example lies inside the ball
� : example on hull of ball
� : example is training error

min 

 s. t.   
         

P c r ξ, ,( ) r2 C ξi

i 1=

n

∑+=

c xi�[ ]
2

r2 ξi+≤

ξi 0≥

max

  s. t. 

D α( ) αiK xi,(

i 1=

n

∑=

αi

i 1=

n

∑ 1= a

Primal: Dual:

ξ
ξi

αi 0=

0 αi C< <

αi C=
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 the Origin

t al., 2001]
ints, the dual is the 

(with slack)
.

!

K xi xj,( ) 0=

s depending on 
ints (e.g. RBF)

j
2

σ2⁄ )
One-Class SVM: Separating from

Observation: [Schölkopf et al., 2000][Schölkopf e
� For kernels depending on the distance between po

same as for classification SVM with 
� all training observations in the positive class 
� one virtual negative example with  and 

=> Equivalent for RBF kernel 

α 1�=

max

  s. t. 

D α( ) αiK xi xi,( )

i 1=

n

∑ αiαjK xi xj,( )

j 1=

n

∑
i 1=

n

∑�=

αi

i 1=

n

∑ 1= and 0 αi C≤ ≤

Dual:

Constant for kernel
distance between po

K xi xj,( ) xi x��(exp=
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th σ2
Influence of C and RBF-Wid
small C
large width σ2

no outliers

small C
large width σ2

some ouliers

large C
large width σ2

small C
small width σ2

(plots courtesy of B. Schoelkopf) 
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n
tion) lie outside of 

f et al., 2001] 
Summary: SVM Novelty Dete

� Find small region where most observations fall
� One-Class SVM: separate observations from origi
� Outliers (or new observations after shift in distribu

region
� Training problem similar to classification SVM

Further work:
� Extension to -SVMs and error bounds [Schölkop

[Schölkopf et al., 2001]
� SVM clustering [Ben-Hur et al., 2001]

Applications:
� Text classification [Manevitz & Yousef, 2001]
� Topic detection

ν
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om [Smola & Schoelkopf, 1998]
SVM Regression

Loss function: 
� -insensitive region with zero loss
� linear loss beyond the �tube�

Graph taken fr

ε
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nd 

C ξi

i 1=

n

∑
ξi 0≥

 and 
 and 

w C ξi ξi°+( )

i 1=

n

∑+⋅

i ξi 0≥

ξi° ξi° 0≥
Primal SVM Optimization Pro

Classification:

Regression:

minimize 

       s. t.   a

J w b ξ, ,( ) 1
2
---w w +⋅=

yi w xi⋅ b+[ ] 1 ξi�≥
δ

minimize 

       s. t.  
              

R w b ξ ξ°, , ,( ) 1
2
---w=

yi w xi⋅ b+[ ]� ε ξ+≤

y� i w xi⋅ b+[ ]+ ε +≤
ε
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iujK vi vj,( )

C

yi 1 1�{ , }∈ m n=

ℜ m 2n=
Dual SVM Optimization Prob

Classification: 
�  for 
�  for 
�  for 
Regression: 
�  for  and  for 
�  for  and  for 
�  for  and  for 

          maximize 

                   s.t.  

L α( ) piαi

i 1=

m

∑
 
 
 
  1

2
--- αiαju

j 1=

m

∑
i 1=

m

∑�=

αiui

i 1=

m

∑ 0= and 0 αi≤ ≤

x1 y1,( ) … xn yn,( ), , P x y,( ) xi ℜN∈∼

pi 1= 1 i n≤ ≤

ui yi= 1 i n≤ ≤

vi xi= 1 i n≤ ≤

x1 y1,( ) … xn yn,( ), , P x y,( ) xi ℜN y∈ i∼ ∈

pi ε yi+= 1 i n≤ ≤ pi ε yi�= n 1+ i 2n≤ ≤

ui 1= 1 i n≤ ≤ ui 1�= n 1+ i 2n≤ ≤

vi xi= 1 i n≤ ≤ vi xi= n 1+ i 2n≤ ≤
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 any other problem!

.ps.gz

98.ps.gz
 SVMs, Cambridge 

, MIT Press, 2002.
Support Vector 

, and Ranking 
Conclusions

� What! How! Why! When! ...and that SVMs solve

Info
� Chris Burges� tutorial (Classification) 
http://www.kernel-machines.org/papers/Burges98

� Smola & Schölkopf�s tutorial (Regression) 
http://www.kernel-machines.org/papers/tr-30-19

� Cristianini & Shawe-Taylor book: Introduction to
University Press, 2000.

� Schölkopf� & Smola book: Learning with Kernels
� My dissertation: Learning to Classify Text Using 

Machines, Kluwer.
� Software: SVMlight for Classification, Regression
http://svmlight.joachims.org/

� General: http://www.kernel-machines.org
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	Overview
	What is an SVM?
	• optimal hyperplane and soft-margin for inseparable data
	• handling non-linear rules and non-standard data using kernels

	How to use SVMs effectively and efficiently?
	How to train SVMs?
	• decomposition algorithms / primal vs. dual / shrinking

	Why can SVMs learn?
	• worst-case / average-case / relation to cross-validation

	When do SVMs work well?
	• properties of classification tasks - a case study in text classification

	SVM-{ranking, novelty detection, regression, ...}?
	• ranking e.g. learning retrieval functions
	• novelty detection: e.g. topic detection


	What I will not (really) talk about...
	• SVMs in the transductive setting [Vapnik, 1998][Joachims, 1999c][Bennet & Demiriz, 1999]
	• Kernel Principal Component Analysis [Schoelkopf et al., 1998]
	• connection to related methods (i.e. Gaussian Process Classifiers, Ridge Regression, Logistic Re...
	Warning: At some points throughout this tutorial, precision is sacrificed for better intuition (e...

	Text Classification
	E.D. And F. MAN TO BUY INTO HONG KONG FIRM
	The U.K. Based commodity house E.D. And F. Man Ltd and Singapore’s Yeo Hiap Seng Ltd jointly anno...

	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.


	Representing Text as Attribute Vectors
	Attributes: Words (Word-Stems)
	Values: Occurrence- Frequencies
	==> The ordering of words is ignored!

	Paradoxon of Text Classification
	30,000 Attributes
	10,000 Training Examples
	... but this is not necessarily a problem!
	Good News: SVMs can overcome this problem!
	Bad News: This does not hold for all high-dimensional problems!

	Experimental Results
	Reuters Newswire
	• 90 categories
	• 9603 training doc.
	• 3299 test doc.
	• ~27000 features

	WebKB Collection
	• 4 categories
	• 4183 training doc.
	• 226 test doc.
	• ~38000 features

	Ohsumed MeSH
	• 20 categories
	• 10000 training doc.
	• 10000 test doc.
	• ~38000 features
	Naive Bayes
	72.3
	82.0
	62.4
	Rocchio Algorithm
	79.9
	74.1
	61.5
	C4.5 Decision Tree
	79.4
	79.1
	56.7
	k-Nearest Neighbors
	82.6
	80.5
	63.4
	SVM
	87.5
	90.3
	71.6



	Part 1 (a): What is an SVM? (linear)
	• prediction error vs. training error
	• learning by empirical risk minimization
	• VC-Dimension and learnability
	• linear classification rules
	• optimal hyperplane
	• soft-margin separation

	Generative vs. Discriminative Training
	Process:
	• Generator: Generates descriptions according to distribution .
	• Teacher: Assigns a value to each description based on .

	Discriminative Training
	• make assumptions about the set H of classifiers
	• estimate error of classifiers in H from the training data
	• select classifier with lowest error rate
	• example: SVM, decision tree


	True (Prediction) Error
	What is a “good” classification rule ?
	Loss function D:
	• 1 if not equal
	• 0 if equal

	What is the “optimal” Learner ?
	Finds the classification rule for which is minimal:
	Problem:
	unknown. Known are training examples .

	Principle: Empirical Risk Minimization (ERM)
	Learning Principle:
	Find the decision rule for which the training error is minimal:
	Training Error:
	==> Number of misclassifications on training examples.
	Central Problem of Statistical Learning Theory:
	When does a low training error lead to a low generalization error?

	When is it Possible to Learn?
	Definition [Consistency]: ERM is consistent for
	• a hypothesis space H and
	• independent of the distribution

	if and only if the sequence
	converges in probability.
	<==> one-sided uniform convergence [Vapnik]
	<==> VC-dimension of H is finite [Vapnik].

	Vapnik/Chervonenkis Dimension
	Definition: The VC-dimension of H is equal to the maximal number d of examples that can be split ...
	h1
	+
	+
	+
	...
	+
	h2
	-
	+
	+
	...
	+
	h3
	+
	-
	+
	...
	+
	h4
	-
	-
	+
	...
	+
	...
	...
	...
	...
	...
	...
	hN
	-
	-
	-
	...
	-


	Linear Classifiers
	Rules of the Form: weight vector , threshold
	Geometric Interpretation (Hyperplane):

	Linear Classifiers (Example)
	Text Classification: Physics (+1) versus Receipes (-1)
	D1
	1
	2
	0
	0
	2
	0
	2
	+1
	D2
	0
	0
	0
	3
	0
	1
	1
	-1
	D3
	0
	2
	1
	0
	0
	0
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	+1
	D4
	0
	0
	1
	1
	1
	1
	1
	-1
	w,b
	2
	3
	-1
	-3
	-1
	-1
	0
	b=1
	D1:
	D2:

	VC-Dimension of Hyperplanes in
	• Three points in can be shattered with hyperplanes.
	• Four points cannot be shattered.
	=> Hyperplanes in -> VCdim=3
	General: Hyperplanes in -> VCdim=N+1

	Rate of Convergence
	Question: After n training examples, how close is the training error to the true error?
	With probablility it hold for all :
	• n number of training examples
	• d VC-dimension of hypothesis space H

	==>

	SVM Motivation: Structural Risk Minimization
	Idea: Structure on hypothesis space.
	Goal: Minimize upper bound on true error rate.

	Optimal Hyperplane (SVM Type 1)
	Assumption: The training examples are linearly separable.

	VC-Dimension of “thick” Hyperplanes
	Lemma: The VCdim of hyperplanes with margin and description vectors is bounded by
	The VC-dimension does not necessarily depend on the number of attributes or the number of paramet...

	Maximizing the Margin
	The hyperplane with maximum margin
	<~ (roughly, see later) ~>
	The hypothesis space with minimal VC-dimension according to SRM
	Support Vectors: Examples with minimal distance.

	Computing the Optimal Hyperplane
	Training Examples:
	Requirement 1: Zero training error!
	Requirement 2: Maximum margin!
	Distance d of point x from hyperplane <w,b>:
	maximize d, with
	=> Requirement 1 & Requirement 2:
	maximize d, with

	Primal Optimization Problem
	maximize d, with
	Set :
	=> maximize , with
	Cancel:
	=> maximize , with
	Minimize inverse and take square:
	=> minimize , with

	Example: Optimal Hyperplane vs. Perceptron
	Train on 1000 pos / 1000 neg examples for “acq” (Reuters-21578).

	Non-Separable Training Samples
	• For some training samples there is no separating hyperplane!
	• Complete separation is suboptimal for many training samples!

	Soft-Margin Separation
	Idea: Maximize margin and minimize training error simultanously.
	Soft Margin:
	minimize
	s. t. and
	Hard Margin:
	minimize
	s. t.
	Hard Margin (separable)
	Soft Margin (training error)

	Controlling Soft-Margin Separation
	Soft Margin: minimize
	s. t. and
	• is an upper bound on the number of training errors.
	• C is a parameter that controls trade-off between margin and error.

	Large C
	Small C

	Example Reuters “acq”: Varying C
	Observation: Typically no local optima, but not necessarily...

	Part 1 (b): What is an SVM? (non-linear)
	• quadratic programs and duality
	• properties of the dual
	• non-linear classification rules
	• kernels and their properties
	• kernels for vectorial data
	• kernels for non-vectorial data

	Quadratic Program
	minimize
	s.t.
	s.t.
	• k linear inequality constraints
	• m linear equality constraints
	• Hessian is pos. semi-definite => convex, no local optima
	• is feasible, if it fulfills constraints


	Fermat Theorem
	Given an unconstrained optimization problem
	minimize
	with convex and differentiable, a necessary and sufficient conditions for a point to be an optimu...

	Lagrange Function
	Given an optimization problem
	minimize s.t.
	the Lagrangian function is defined as
	• and are called Lagrange Multipliers


	Lagrange Theorem
	Given an optimization problem
	minimize s.t.
	with convex and differentiable and all h affine (w*x+b), necessary and sufficient conditions for ...
	=>

	Karush-Kuhn-Tucker Theorem
	Given an optimization problem
	minimize s.t.
	with convex and differentiable and all g and h affine, necessary and sufficient conditions for a ...
	Sufficient for convex QP:

	Dual Optimization Problem
	Primal OP: minimize
	s. t. and
	Lemma: The solution can always be written as a linear combination
	of the training data.
	Dual OP: maximize
	s.t.
	==> positive semi-definite quadratic program

	Primal <=> Dual
	Theorem: The primal OP and the dual OP have the same solution. Given the solution of the dual OP,
	is the solution of the primal OP.
	Theorem: For any set of feasible points .
	=> two alternative ways to represent the learning result
	• weight vector and threshold
	• vector of “influences”


	Properties of the Soft-Margin Dual OP
	Dual OP: maximize
	s. t.
	• typically single solution (i. e. is unique)
	• one factor for each training example
	• “influence” of single training example limited by C
	• <=> SV with
	• <=> SV with
	• else
	• based exclusively on inner product between training examples


	Non-Linear Problems
	Problem:
	• some tasks have non-linear structure
	• no hyperplane is sufficiently accurate

	How can SVMs learn non-linear classification rules?

	Extending the Hypothesis Space
	Idea:
	==> Find hyperplane in feature space!
	Example:
	==> The separating hyperplane in features space is a degree two polynomial in input space.

	Example
	Input Space: (2 Attributes)
	Feature Space: (6 Attributes)

	Kernels
	Problem: Very many Parameters! Polynomials of degree p over N attributes in input space lead to a...
	Solution: [Boser et al., 1992] The dual OP need only inner products => Kernel Functions
	Example: For calculating gives inner product in feature space.
	We do not need to represent the feature space explicitly!

	SVM with Kernels
	Training: maximize
	s. t.
	Classification: For new example x
	New hypotheses spaces through new Kernels:
	Linear:
	Polynomial:
	Radial Basis Functions:
	Sigmoid:

	Example: SVM with Polynomial of Degree 2
	Kernel:
	plot by Bell SVM applet

	Example: SVM with RBF-Kernel
	Kernel: plot by Bell SVM applet

	What is a Valid Kernel?
	Mercer’s Theorem (see [Cristianini & Shawe-Taylor, 2000])
	Theorem [Saitoh]: Let X be a finite input space of n points . A function is a valid kernel in X i...
	that is symmetric
	and positive semi-definite

	How to Construct Valid Kernels?
	Theorem: Let and be valid Kernels over , , , , a real-valued function on , with a kernel over , a...
	=> Construct complex Kernels from simple Kernels.

	Kernels for Non-Vectorial Data
	Kernels for Sequences: Two sequences are similar, if the have many common and consecutive subsequ...
	Example [Lodhi et al., 2002]: For consider the following features space
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	=> , efficient computation via dynamic programming.
	=> Fisher Kernels [Jaakkola & Haussler, 1998]

	Computing String Kernel (I)
	Definitions:
	• : sequences of length n over alphabet
	• : index sequence (sorted)
	• : substring operator
	• : range of index sequence

	Kernel: Average range of common subsequences of length n
	Auxiliary Function: Average range to end of sequence of common subsequences of length n

	Computing String Kernel (II)
	Kernel:
	Auxiliary:

	Other Kernels for Complex Data
	General information on Kernels:
	• Introduction to Kernels [Cristianini & Shawe-Taylor, 2000]
	• All the details on Kernels + Background [Schoelkopf & Smola, 2002]

	Kernels for specific structures:
	• Diffusion Kernels for graphs [Kondor & Lafferty, 2002]
	• Kernels for grammars [Collins & Duffy, 2002]
	• Kernels for trees, lists, etc. [Gaertner et al., 2002]


	Two Reasons for Using a Kernel
	(1) Turn a linear learner into a non-linear learner
	(e.g. RBF, polynomial, sigmoid)
	(2) Make non-vectorial data accessible to learner
	(e.g. string kernels for sequences)

	Summary What is an SVM?
	Given:
	• Training examples
	• Hypothesis space according to kernel
	• Parameter C for trading-off training error and margin size

	Training:
	• Finds hyperplane in feature space generated by kernel.
	• The hyperplane has maximum margin in feature space with minimal training error (upper bound ) g...
	• The result of training are . They determine .

	Classification: For new example
	Part 2: How to use an SVM effectively and efficiently?
	• normalization of the input vectors
	• selecting C
	• handling unbalanced datasets
	• selecting a kernel
	• multi-class and multi-label classification
	• selecting a training algorithm


	Design Decisions in Working with SVMs
	Setting up the learning task
	• multi-class problems
	• multi-label problems

	Representation of the data (efficiency and effectiveness)
	• selecting features
	• selecting feature values
	• normalizing the data (directional vs. non-directional data)
	• selecting a kernel

	Selecting a good value for the parameter C and kernel parameters
	Selecting a training algorithm that is efficient for the particular QP
	• kernel SVM vs. linear SVM
	• many sparse features vs. few dense features


	Handling Multi-Class / Multi-Label Problems
	Standard classification SVM addresses binary problems
	Multi-class classification:
	• one-against-rest decomposition into binary problems
	• learn one binary SVM per class with
	• assign new example to
	• pairwise decomposition into binary problems
	• learn one binary SVM per class pair
	• assign new example by majority vote
	• reducing number of classifications [Platt et al., 2000]
	• multi-class SVM [Weston & Watkins, 1998]
	• multi-class SVM via ranking [Crammer & Singer, 2001]

	Multi-label classification:
	• learn one binary SVM per class with


	Which Features to Choose?
	Things to take into consideration:
	• if features sparse, then dimensionality of space no efficiency problem
	• computations based on inner product between vectors
	• consider frequency distribution of features (e.g. many rare features)
	• Zipf distribution of words
	• see TCat-model
	• SVMs can handle redundancy in features
	• bag-of-words representation redundant for topic classification
	• see TCat-model
	• as few irrelevant features as possible
	• stopword removal often helps in text classification
	• see TCat-model


	How to Assign Feature Values?
	Things to take into consideration:
	• importance of feature is monotonic in its absolute value
	• the larger the absolute value, the more influence the feature gets
	• typical problem: number of doors [0-5], price [0-100000]
	• want relevant features large / irrelevant features low (e.g. IDF)
	• normalization to make features equally important
	• by mean and variance:
	• by other distribution
	• normalization to bring feature vectors onto the same scale
	• directional data: text classification
	• by normalizing the length of the vector according to some norm
	• changes whether a problem is (linearly) separable or not
	• scale all vectors to a length that allows numerically stable training


	Selecting a Kernel
	Things to take into consideration:
	• kernel can be thought of as a similarity measure
	• examples in the same class should have high kernel value
	• examples in different classes should have low kernel value
	• ideal kernel: equivalence relation
	• normalization also applies to kernel
	• relative weight for implicit features
	• normalize per example for directional data
	• potential problems with large numbers, for example polynomial kernel for large d


	Selecting Regularization Parameter C
	Common Method
	• a reasonable starting point and/or default value is
	• search for C on a log-scale, for example
	• selection via cross-validation or via approximation of leave-one-out [Jaakkola&Haussler,1999][V...

	Note
	• optimal value of C scales with the feature values
	• implicit slack variables via infrequent features
	• if every example has one unique feature , then always separable
	• unique features act like squared slack variable

	minimize s. t.

	Selecting Kernel Parameters
	Problem
	• results often very sensitive to kernel parameters (e.g. variance in RBF kernel)
	• need to simultaneously optimize C, since optimal C typically depends on kernel parameters

	Common Method
	• search for combination of parameters via exhaustive search
	• selection of kernel parameters typically via cross-validation

	Advanced Approach
	• avoiding exhaustive search for improved search efficiency [Chapelle et al, 2002]


	Handling Unbalanced Datasets
	Problem
	• often the number of positive examples is much lower than the number of negative examples
	• SVM minimizes error rate => always say “no” gives great error rate, but poor recall

	Common Methods
	• cost model that makes errors on positive examples more expensive

	min s.t. and
	• change threshold after training to some higher value


	Selecting an SVM Training Algorithm
	SVMlight (also SVMtorch, mySVM, BSVM, etc.) [Joachims, 1999b]
	• solve dual QP to obtain hyperplane from -coefficients
	• iteratively decompose large QP into a sequence of small QPs
	• handles kernels and treats linear SVM as special case

	SMO [Platt, 1999]
	• special case of working sets of size two
	• simple analytical solution of QP subproblems

	ASVM [Mangasarian & Musicant, 2000]
	• restricted to linear SVMs with quadratic loss
	• fast for low dimensional data

	Nearest Point Algorithm [Keerthi et al., 1999]
	• restricted to quadratic loss
	• compute distance between convex hulls


	Part 3: How to Train SVMs?
	• efficiency of primal vs. dual
	• decomposition algorithm
	• working set selection
	• optimality criteria
	• caching
	• shrinking

	How can One Train SVMs Efficiently?
	Solve one of the following quadratic optimization problems:
	min
	s. t. and
	<= DUAL =>
	max
	s. t.
	=> positive semi-definite quadratic program with variables

	Decomposition
	Idea: Solve small subproblems until convergence (Osuna, et al.)!

	Decomposition
	Idea: Solve small subproblems until convergence (Osuna, et al.)!
	Time complexity: working set of size and nonzero features:
	• extracting subproblem:
	• solving subproblem:
	• updating large problem with result of subproblem:


	What Working Set to Select Next?
	Solution: Select subproblem with q variables that minimizes
	Efficiency: Selection linear in number of examples.
	Convergence: Proofs by Chi-Chen Lin / Keerthi under mild assumptions.

	How to Tell that we Found the Optimal Solution?
	Karush-Kuhn-Tucker conditions lead to the following criterion:
	maximize
	is optimal s. t.
	<=>

	Demo
	The Steps of Solving a 2-d Problem.

	Caching
	Observation: Most CPU-time is spent on computing the Hessian!
	Idea: Cache kernel evaluations.
	Result: A small cache leads to a large improvement.

	Shrinking
	Idea: If we knew the set of SVs, we could solve a smaller problem! (complexity per iteration from...
	Algorithm:
	• monitor the KKT-conditions in each iteration
	• if a variable is “stuck at bound”, remove it
	• do final optimality check


	Summary How can One Train SVMs Efficiently?
	SVMlight (also SVMtorch, mySVM, BSVM, etc.)
	• solve dual QP to obtain hyperplane from -coefficients
	• iteratively decompose large QP into a sequence of small QPs
	• select working set according to steepest feasible descent criterion
	• check optimality using Karush-Kuhn-Tucker conditions

	Other training algorithms:
	• SMO requires working set of size two => simple analytical solution of QP subproblems [Platt, 1999]
	• ASVM restricted to linear SVMs with quadratic loss => fast for low dimensional data [Mangasaria...
	• Nearest Point Algorithm restricted to quadratic loss => compute distance between convex hulls [...


	Part 3: Why do SVMs Work?
	• worst-case bounds
	• bounds on the expected generalization error
	• leave-one-out estimation
	• necessary criteria for leave-one-out

	...classifies as well as possible!?
	What is a “good” classification rule ?
	What is a “good” learner ?
	“Worst-Case” Learner:
	“Average-Case” Learner:

	SVMs as Worst-Case Learner
	Goal: Guarantee of the form
	Theorem: [Shawe-Taylor et al,1996]
	So, if
	• the training error on sample S is low and
	• the margin d is large,

	then with probablility the SVM will output a classification rule with true error .
	Problem: For most practical problems this bound is vacuous, i.e. .

	SVMs as Average-Case Learner
	Theorem: The expected error of an SVM is bounded by
	with the expected soft margin and the expected training error bound [Joachims, 2001] [Vapnik, 1998].
	Problem: The expectations are unknown.

	Leave-One-Out
	Training set:
	Approach: Repeatedly leave one example out for testing.
	...
	...

	Question: Is there a connection between margin and the estimate?

	Necessary Cond. for Leave-One-Out Error of SVM
	Lemma: SVM [Joachims, 2000] [Jaakkola & Haussler, 1999] [Vapnik & Chapelle, 2000]
	Input:
	0.0
	0.7
	3.5
	0.1
	1.3
	0.0
	0.0
	...
	OK
	OK
	ERROR
	OK
	OK
	OK
	OK
	...
	• dual variable of example i
	• slack variable of example i
	• bound on length

	=>

	Case 1: Example is no SV
	Case 2: Example is SV with Low Influence
	Case 2: Example is SV with Low Influence
	Case 3: Example has Small Training Error
	Case 3: Example has Small Training Error
	Experiment: Reuters-21578
	• 6451 training examples
	• 6451 test examples for holdout testing
	• ~27,000 features
	Average error estimate over 10 random training/test splits:
	=> small bias, variance of estimators is approximately equal

	Fast Leave-One-Out Estimation for SVMs
	Lemma: Training errors are always leave-out-out errors.
	Algorithm:
	• () = train_SVM(X,0,0);
	• for all training examples, do
	• if then loo++;
	• else if () then loo=loo;
	• else train_SVM();

	Experiment:
	Reuters
	6451
	0.20%
	0.58%
	11.1
	32.3
	WebKB
	2092
	6.78%
	20.42%
	78.5
	235.4
	Ohsumed
	10000
	1.07%
	2.56%
	433.0
	1132.3


	Estimated Error of SVM
	Leave-One-Out Error Estimate:
	For general SVMs:
	=>
	=>

	Summary Why do SVMs Work?
	If
	• the training error (on the sample S / on average) is low and
	• the margin d/R (on the sample S / on average) is large

	then
	• the SVM has learned a classification rule with low error rate with high probablility (worst-case).
	• the SVM learns classification rules that have low error rate on average.
	• the SVM has learned a classification rule for which the (leave-one- out) estimated error rate i...


	Part 4: When do SVMs Work Well?
	Successful Use:
	• Optical Character Recognition (OCR) [Vapnik, 1998]
	• Face Recognition, etc. [Osuna et al., 1997]
	• Text Classification [Joachims, 1997] [Dumais et al., 1998]
	• ...

	Open Questions:
	What characterizes these problems?
	How can the good performance be explained?
	What are “sufficient conditions” for using (linear) SVMs successfully?

	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.


	Learning Text Classifiers
	Goal:
	• Learner uses training set to find classifier with low prediction error.

	Obstacle:
	• No Free Lunch: There is no learner that does well on every task.


	Learning Text Classifiers Successfully
	The learner produces a classifier with low error rate
	<=>
	The properties of the learner fit the properties of the process.

	Learning SVM Text Classifiers Successfully
	The learner produces a classifier with low error rate
	<=>
	The properties of the learner fit the properties of the process.

	Representing Text As Feature Vectors
	Features: words (wordstems)
	Values: occurrence frequency
	==> Ignore ordering of words.

	Paradox of Text Classification
	30,000 attributes
	10,000 training examples

	Experimental Results
	Reuters Newswire
	• 90 categories
	• 9603 training doc.
	• 3299 test doc.
	• ~27000 features

	WebKB Collection
	• 4 categories
	• 4183 training doc.
	• 226 test doc.
	• ~38000 features

	Ohsumed MeSH
	• 20 categories
	• 10000 training doc.
	• 10000 test doc.
	• ~38000 features
	Naive Bayes
	72.3
	82.0
	62.4
	Rocchio Algorithm
	79.9
	74.1
	61.5
	C4.5 Decision Tree
	79.4
	79.1
	56.7
	k-Nearest Neighbors
	82.6
	80.5
	63.4
	SVM
	87.5
	90.3
	71.6



	Why Do SVMs Work Well for Text Classification?
	A statistical learning model of text classification with SVMs:
	text classification task

	Margin/Loss Based Bound on the Expected Error
	Theorem: The expected error of a soft margin SVM is bounded by
	Where is the expected soft margin and is the expected training loss on training sets of size .

	First Step Completed
	text classification task

	Properties 1+2: Sparse Examples in High Dimension
	• High dimensional feature vectors (30,000 features)
	• Sparse document vectors: only a few words of the whole language occur in each document
	Reuters Newswire Articles
	9,603
	27,658
	74
	(0.27%)
	Ohsumed MeSH Abstracts
	10,000
	38,679
	100
	(0.26%)
	WebKB WWW-Pages
	3,957
	38,359
	130
	(0.34%)


	Property 3: Heterogeneous Use Of Words
	MODULAIRE BUYS BOISE HOMES PROPERTY
	Modulaire Industries said it acquired the design library and manufacturing rights of privately-ow...
	No pair of documents shares any words, but “it”, “the”, “and”, “of”, “for”, “an”, “a”, “not”, “th...

	Property 4: High Level Of Redundancy
	=> Few features are irrelevant!

	Property 5: “Zipf’s Law”
	Zipf’s Law: In text, the i-th frequent word occurs times.
	=> Most words occur very infrequently!

	Text Classification Model
	Definition: For the TCat-concept there are disjoint sets of features. Each positive (negative) ex...
	Example:

	TCat-Concept for WebKB “Course”
	Real Text Classification Tasks as TCat-Concepts
	Reuters “Earn”:
	Webkb “Course”:
	Ohsumed “Pathology”:

	Second Step Completed
	text classification task

	The Margin of TCat-Concepts
	Lemma 1: For -concepts there is always a hyperplane passing through the origin with margin at least
	Example: The previous example WebKB “course” has a margin of at least

	The Length of Document Vectors
	Lemma 2: If the ranked term frequencies in a document with words have the form of the generalized...
	based on their frequency rank , then the Euclidean length of the document vector is bounded by
	Example: For WebKB “course” with
	follows that .

	, , and for Text Classification
	Reuters Newswire Stories
	• 10 most frequent categories
	• 9603 training examples
	• 27658 attributes
	1143
	0
	1848
	0
	1489
	27
	585
	0
	810
	4
	869
	9
	2082
	33
	458
	0
	405
	2
	378
	0



	Learnability of TCat-Concepts
	Theorem: For -concepts and documents with words that follow the generalized Zipf’s Law the expect...

	Comparison Theory vs. Experiments
	Reuters “earn”
	1.5%
	1.3%
	WebKB “course”
	11.2%
	4.4%
	Ohsumed “pathology”
	94.6%
	23.1%
	• Model can differentiate between “difficult” and “easy” tasks
	• Predicts and reproduces the effect of information retrieval heuristics (e.g. TFIDF-weighting)

	Sensitivity Analysis
	What makes a text classification problem suitable for a linear SVM?
	High Redundancy:
	High Discriminatory Power:
	High Frequency:

	What does this Model Provide?
	Connects the statistical properties of text classification tasks with generalization error of SVM!
	text classification task
	=>
	• Explains the behavior of (linear) SVMs on text classification tasks
	• Gives guideline for when to apply (linear) SVMs
	• Provides formal basis for developing new methods


	Summary When do (Linear) SVMs Work Well?
	Intuition: If the problem can be cast as a TCat-concept with
	• high redundancy,
	• strongly discriminating features
	• particularly in the high frequency region

	then linear SVMs achieve a low generalization error [Joachims, 2002].
	Assumptions and Restrictions:
	• no noise (attribute and classification)
	• no variance (only “average” examples)
	• only upper bounds, no lower bounds


	Part 3: SVM-X?
	• common elements of SVMs for other problem
	• learning ranking functions from preferences
	• novelty and outlier detection
	• regression

	The Receipe for Cooking an SVMs
	Ingredients:
	• linear prediction rules
	• training problem with objective a la and with linear constraints (=> quadratic program)

	Stirr and add flavor:
	• Classification
	• Ranking [Herbrich et al., 2000][Joachims, 2002c]
	• Novelty Detection [Schoelkopf et al., 2000]
	• Regression [Vapnik, 1998][Smola & Schoelkopf, 1998]

	That makes:
	• nice SVM with global optimal solution and duality
	• often sparse solution (#SVs < n)
	• Hint: garnish the dual with kernel to get non-linear prediction rules


	SVM Ranking
	Query:
	• “Support Vector Machine”

	Goal:
	• “rank the document I want high in the list”


	Training Examples from Clickthrough
	Assumption: If a user skips a link a and clicks on a link b ranked lower, then the user preferenc...
	Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	Ranking Presented to User:

	Training Examples from Clickthrough
	Assumption: If a user skips a link a and clicks on a link b ranked lower, then the user preferenc...
	Example: (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	Ranking Presented to User:

	Learning to Rank
	Assume:
	• distribution of queries P(Q)
	• distribution of target rankings for query P(R | Q)

	Given:
	• collection D of m documents
	• i.i.d. training sample

	Design:
	• set of ranking functions F, with elements f: (weak ordering)
	• loss function
	• learning algorithm

	Goal:
	• find with minimal


	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	A Loss Function for Rankings
	For two orderings and , a pair is
	• concordant, if and agree in their ordering P = number of concordant pairs
	• discordant, if and disagree in their ordering Q = number of discordant pairs

	Loss function: [Wong et al., 88], [Cohen et al., 1999], [Crammer & Singer, 01], [Herbrich et al.,...
	Example:
	=> discordant pairs (c,b), (d,b) =>

	Interpretation of Loss Function
	Notation:
	• P concordant pairs
	• Q discordant pairs

	Kendall’s Tau: total ordering, uniform sampling of document pairs
	Average Precision: ordering with two ranks

	What does the Ranking Function Look Like?
	Sort documents by their “retrieval status value” rsv(,) with query [Fuhr, 89]:
	rsv(,) = * #(of query words in title of ) + * #(of query words in H1 headlines of ) ... + * PageR...
	Select F as:

	Minimizing Training Loss For Linear Ranking Functions
	Given:
	• training sample

	Zero training loss on S:
	Minimize (bound on) training loss (total ordering) on S:

	Ranking Support Vector Machine
	Optimization Problem (primal):
	Properties:
	• minimize trade-off between training loss and margin size d = 1 / ||w||
	• quadratic program, similar to classification SVM (=> SVMlight)
	• convex => unique global optimum
	• radius of ball containing the training points R


	How is this different from ...
	... classification?
	f1(q): - - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	f2(q): - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
	=> both have same error rate (always classify as non-relevant)
	=> very different rank loss
	... ordinal regression?
	Training set , with Y ordinal (and finite)
	=> ranks need to be comparable between examples

	Experiment Setup
	Collected training examples with partial feedback about ordering from
	• user skipping links

	=> (3 < 2) and (7 < 2), (7 < 4), (7 < 5), (7 < 6)
	• clicked on document should be ranked higher than 50 random documents =>


	Query/Document Match Features F(q,d)
	Rank in other search engine:
	• Google, MSNSearch, Altavista, Hotbot, Excite

	Query/Content Match:
	• cosine between URL-words and query
	• cosine between title-words and query
	• query contains domain-name

	Popularity Attributes:
	• length of URL in characters
	• country code of URL
	• domain of URL
	• word “home” appears in title
	• URL contains “tilde”
	• URL as an atom


	Experiment I: Learning Curve
	Training examples: preferences from 112 queries

	Experiment II
	Experiment Setup:
	• meta-search engine (Google, MSNSearch, Altavista, Hotbot, Excite)
	• approx. 20 users
	• machine learning students and researchers from University of Dortmund AI Unit (Prof. Morik)
	• asked to use system as any other search engine
	• display title and URL of document

	collected training data => 260 training queries (with at least one click)

	Experiment: Learning vs. Google/MSNSearch
	Learned
	Google
	29
	13
	27
	69
	Learned
	MSNSearch
	18
	4
	7
	29
	Learned
	Toprank
	21
	9
	11
	41
	~20 users, as of 2nd of December

	Toprank: rank by increasing mimium rank over all 5 search engines
	=> Result: Learned > Google Learned > MSNSearch Learned > Toprank

	Learned Weights
	0.60
	cosine between query and abstract
	0.48
	ranked in top 10 from Google
	0.24
	cosine between query and the words in the URL
	0.24
	document was ranked at rank 1 by exactly one of the 5 search engines
	...
	0.17
	country code of URL is “.de”
	0.16
	ranked top 1 by HotBot
	...
	-0.15
	country code of URL is “.fi”
	-0.17
	length of URL in characters
	-0.32
	not ranked in top 10 by any of the 5 search engines
	-0.38
	not ranked top 1 by any of the 5 search engines

	Summary: SVM Ranking
	• An SVM method for learning ranking functions
	• Training examples are rankings => pairwise preferences like “A should be ranked higher than B”
	• Turn training examples into linear inequality constraints
	• Results in quadratic program similar to classification
	• Rank new examples by sorting according to distance from hyperplane
	Applications:
	• personalizing search engines
	• tuning retrieval functions in XML intranets
	• recommender systems
	• betting on horses


	SVM Novelty/Outlier Detection
	Assume:
	• distribution of feature vectors P(X)

	Goal: [Schölkopf et al., 1995] [Tax & Duin, 2001]
	• find the region R of -support for the distribution P(X), i.e.
	• keep the volume of R as small as possible

	=> new points falling outside of R are either outliers, or the distribution must have changed.
	Problem:
	• estimate R from unlabeled oberservations


	Example: Small and Large Volume Regions
	Assume that we know the distribution P(X).
	All following are regions with :
	trivial optimal sub-optimal

	Find Region using Examples
	Problem:
	• P(X) cannot be observed directly.

	Given:
	• training oberservations drawn according to P(X).

	Approach: [Schoelkopf et al., 1995][Tax & Duin, 2001]
	• find smallest ball that includes (most) training observations

	min
	s. t.
	• is the center of the ball, is its radius.


	Properties of the Primal/Dual
	min
	s. t.
	Properties:
	• convex => global optimum
	• measures distance from ball
	• : example lies inside the ball
	• : example on hull of ball
	• : example is training error


	One-Class SVM: Separating from the Origin
	Observation: [Schölkopf et al., 2000][Schölkopf et al., 2001]
	• For kernels depending on the distance between points, the dual is the same as for classificatio...
	• all training observations in the positive class (with slack)
	• one virtual negative example with and .

	max
	s. t.
	=> Equivalent for RBF kernel !

	Influence of C and RBF-Width s2
	small C large width s2 no outliers
	small C large width s2 some ouliers
	large C large width s2
	small C small width s2 (plots courtesy of B. Schoelkopf)

	Summary: SVM Novelty Detection
	• Find small region where most observations fall
	• One-Class SVM: separate observations from origin
	• Outliers (or new observations after shift in distribution) lie outside of region
	• Training problem similar to classification SVM
	Further work:
	• Extension to -SVMs and error bounds [Schölkopf et al., 2001] [Schölkopf et al., 2001]
	• SVM clustering [Ben-Hur et al., 2001]

	Applications:
	• Text classification [Manevitz & Yousef, 2001]
	• Topic detection


	SVM Regression
	Loss function:
	• -insensitive region with zero loss
	• linear loss beyond the “tube”


	Primal SVM Optimization Problems
	Classification:
	minimize
	s. t. and
	Regression:
	minimize
	s. t. and
	and

	Dual SVM Optimization Problems
	maximize
	s.t.
	Classification:
	• for
	• for
	• for

	Regression:
	• for and for
	• for and for
	• for and for


	Conclusions
	• What! How! Why! When! ...and that SVMs solve any other problem!
	Info
	• Chris Burges’ tutorial (Classification) http://www.kernel-machines.org/papers/Burges98.ps.gz
	• Smola & Schölkopf’s tutorial (Regression) http://www.kernel-machines.org/papers/tr-30-1998.ps.gz
	• Cristianini & Shawe-Taylor book: Introduction to SVMs, Cambridge University Press, 2000.
	• Schölkopf’ & Smola book: Learning with Kernels, MIT Press, 2002.
	• My dissertation: Learning to Classify Text Using Support Vector Machines, Kluwer.
	• Software: SVMlight for Classification, Regression, and Ranking http://svmlight.joachims.org/
	• General: http://www.kernel-machines.org
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