Supervised Learning Supervised Learning

* y=F(x): true function (usually not known)

Decision trees
Artificial neural nets ¢+ D: training sample drawn from F(x)
K-nearest neighbor 57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
3 78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

1 69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

Support Vector Machines (SVMS) 18,M,165,0,110,80.41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
g g 54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0
Linear regression 84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
.. . - 89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0
LOngth regression y 49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1

Supervised Learning ' Supervised Learning

Train Set: : F(x): true function (usually not known)

57,M,195,0,125,95,39,25.,0,1,0,0,0,1,0,0,0.0,0,0,1,1,0,0,0,0,0,0,0.0 D: training sample drawn from F(X)
78.M.,160,1,130,100,37,40,1,0,0,0,1,0.1.1,1,0,0.0.0.0.0.0,0,0,0.0.0.0

69.F.180,0,115,85,40.22,0,0,0,0,0.1.0.0,0,0.1,0.0.0.0,0,0,0,0,0.0.0.0 : 57,M.195,0,125.95.39,25.0,1,0,0,0,1,0.0.0.0.00.1,1,0.0,0.0.0.0.0.0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 E 78.M,160,1,130,100,37.40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0.0.0.0,0.
54.F,135.0,115,95,39.35.1,1,0.0,0,1,0,0,0,1,0.0.0,0,1,0,0.0.1,0.0,0,0 69.F.180,0.115,85,40.22.0,0,0,0,0.1.0,0,0,0.1,0.0.0.0,0,0,0,0,0.0.0.0
84,F,210,1,135,105,39,24,0,0.0,0.0,0,0.0,10,0,0,0,0.0,0.0,0,0.0,0.0 18.M,165,0,110,80.41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0
89,F,135,0,120,95,36,28,0.0,0,0,0,0,0,0,0,0,0,0.1,1,0,0,0,0,0,0,1,0,0 54.F.135.0,115.95,39.35.1,1,0.0,0,10,0,0,1,0.0,0,0,1,0,0.0.1,0.0,0,0
49M,195,0,115,85,39,32,0,0,0.1,1,0.0,0,0,0,0.1,0.0.0,0,0,1,0.0.0.0 . ..
40,M,205,0,115,90,37,18.0,0,0,0,0.0.0,0,0,0,0.0.0.0.0,0,0,0,0.0.0.0 - G(X) model learned from training Sample D
74M,250.1,130,100,38.26,1,1,0,0.0.1,1,0,0,0,0,0,0.0.0,0,0,0,0.0.0 ; ?

77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1 R . Goal: E<(F(X)_G(X))2> is small (near Zero) for
future test samples drawn from F(x)

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0

Test Set:

71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0




A Simple Decision Tree

o g Qutlook
Decision Trees | Outec
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|

High Normal Strong

No Yes No

©Tom Mitchell, McGraw Hill, 1997

Representation A Real Decision Tree

« internal node =

attribute test

Sunny  Overcast

‘ ~ branch =

attribute value

High Normal Strong Weak

/ \ ~ leafnode =
¥ N ¥ .
“ ? v classification

©Tom Mitchell, McGraw Hill, 1997




A Real Decision Tree Real Data: C-Section Prediction

Small Decision Tree Trained on 1000 Patients:

Do Decision Tree Demo Now!
+833+167 (tree) 0.8327 0.1673 0

fetal presentation = 1: +822+116 (tree) 0.8759 0.1241 0

| previous_csection = 0: +767+81 (tree) 0.904 0.096 0

| | primiparous = 0: +399+13 (tree) 0.9673 0.03269 0

| | primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | | fetal distress = 0: +334+47 (tree) 0.8757 0.1243 0

[ | | | birth_weight <3349: +201+10.555 (tree) 0.9482 0.05176 0
| | | | birth_weight>=3349: +133+36.445 (tree) 0.783 0.217 0
| | | fetal distress = 1:+34+21 (tree) 0.6161 0.3839 0

| previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0

fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

Real Data: C-Section Prediction Search Space

« all possible sequences of all possible tests

+ very large search space, e.g., if N binary attributes:
1 null tree
N trees with 1 (root) test

Fast i N*(N-1) trees with 2 tests

Reasonably intelligible N*(N-1)*(N-1) trees with 3 tests
~ N* trees with 4 tests
maximum depth is N

« size of search space is exponential in number of attributes
too big to search exhaustively
exhaustive search might overfit data (too many models)
so what do we do instead?

Demo summary:

Larger training sample => larger tree
Different training sample => different tree

collaboration with Magee Hospital, Siemens Research, Tom Mitchell




Top-Down Induction of Decision Trees What 1s a Good Split?

Attribute_1 ? Attribute_2 ?

« TDIDT
+ ak.a. Recursive Partitioning
— find “best” attribute test to install at current node
— split data on the installed node test
— repeat until:
« all nodes are pure
« all nodes contain fewer than k cases
* no more attributes to test
« tree reaches predetermined max depth
« distributions at nodes indistinguishable from chance

What is a Good Split? % Find “Best” Split?

Attribute_1 ? Attribute_2 ? Attribute_1 ? Attribute_2 ?

right left right

[ #Class 1, #Class, ]
- del# Class+#Class, J l# Class+# Class, J

rightnode

0.6234 0.4412




Splitting Rules

¢ Information Gain = reduction in entropy due to
splitting on an attribute
Entropy = how random the sample looks
= expected number of bits needed to
encode class of a randomly drawn + or — example
using optimal information-theory coding

Entropy= —p, log, p, — p_log, p_

S
Gain(S,A) = Entropy(S) - || S|| Entropy(S,)
vEValues(A)

Information Gain

Attribute_1 ?

right

50, 50 75 75
- .Q Entropy(S) =-p,log, p, - p_log, p_ = -

log L 1og, = =0.6730
125 2125 125 125
40 15

40
AL: Entropy(left) = 1 015,06, 15 _0.5850
ntropy(left) = 08, 55~ 55198255

10 60 60

-3
2 Al: Entropy(rtght)———log2— —1ogz——0.4101

70 70

oL@ Gain(s,Al) = Entropy(S) - E I ‘Entropy(S )=0. 6730—%0 5859-%0 4101=0.1855

vEValue '(A)‘ ‘

0.40 0.60

fraction in class 1

Information Gain

Attribute_2 ?

left right

50 50 75 By B 75 —0.6730
125 125 T12s 125
25 15
A2: Entropy(left)—-—logz— —logz——06616

p 40 40 40 40
Py
A2 Entropy(ri; ht)——f
=9 i

25 60 60
~<log,

=0.6058
85

1
%885 85

=@ Gain($,A2) = Entropy(S)- Y, 15 49 83

vEValue (A)‘ ‘
»

Entropy(S,)=0.6730 - —0 6616 - ——0.6058 =0.0493
125 125



Information Gain

Splitting Rules

Attribute_1 ? Attribute_2 ?

left right left right

InfoGain = 0.1855 InfoGain = 0.0493

Splitting Rules

* Problem with Node Purity and Information Gain:
- prefer attributes with many values

— extreme cases:
* Social Security Numbers
* patient ID’s
* integer/nominal attributes with many values (JulianDay)

Gain_Ratio Correction Factor

. . InformationGain
GainRatio(S,A) = f—
CorrectionFactor

S
Entropy(S) - E - Entropy(S,)

N

vEValues(A)

GainRatio(S,A) =
2 ‘S

vEValues(A) ‘S

Gain Ratio for Equal Sized n-Way Splits

ABS(Correction Factor)

20 30
Number of Splits




Splitting Rules Experiment

GINI Index : Randomly select # of training cases: 2-1000
— node impurity weighted by node size Randomly select fraction of +’s and -’s: [0.0,1.0]
. Randomly select attribute arity: 2-1000

GINI,,(Node) =1~ 3[p,T’
2 cE;l'asses Compute IG, GR, GINI
Lo o, -3 Slemiw, "
*
®

cvimmin 1S
vEValues(A) <«— random arity

Info_Gain Gain_Ratio

“ns.iggrg’ using 1:3 '+

Good Splits
Good Splits
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Gain Ratio

N
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GINI Score
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GINI Score vs. Gain_Ratio

Info_Gain vs. Gain_Ratio

GINI Score

“ns.iggrg using 34 +

Gain Ratio

T ¥
“ns.ig.gr.gi using
N .3

-0.4
Gain Ratio

Attribute Types

Boolean
Nominal
Ordinal
Integer

Continuous
— Sort by value, then find best threshold for binary split
— Cluster into n intervals and do n-way split




Overfitting

Machine Learning LAW #1

09

0.85

Accuracy

On training data ——
On test data ----

30 40 50 60 70 80 90

Size of tree (number of nodes)

©Tom Mitchell, McGraw Hill, 1997

Pre-Pruning (Early Stopping)

Because performance on data used for
training often looks optimistically good,
you should NEVER use test data for any
part of learning.

Post-Pruning

« Evaluate splits before installing them:
— don’t install splits that don’t look worthwhile
-~ when no worthwhile splits to install, done

* Seems right, but:

— hard to properly evaluate split without seeing what
splits would follow it (use lookahead?)

~ some attributes useful only in combination with other
attributes (e.g., diagonal decision surface)

— suppose no single split looks good at root node?

Grow decision tree to full depth (no pre-pruning)
Prune-back full tree by eliminating splits that do
not appear to be warranted statistically

Use train set, or an independent prune/test set, to
evaluate splits

Stop pruning when remaining splits all appear to
be warranted

Alternate approach: convert to rules, then prune

rules




Converting Decision Trees to Rules

Missing Attribute Values

+ each path from root to a leaf is a separate rule: * Many real-world data sets have missing values

fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0 + Will do lecture on missing values later in course
| previous_csection = 0: +767+81 (tree) 0.904 0.096 0

| primi L: +368+68 (roc) 0.8432 0.1568 0  Decision trees handle missing values easily/well.
primiparous = 1: ee) 0. .

| | | fetal distress = 0: +334+47 (tree) 0.8757 0.1243 0
| | | | birth_weight <3349: +201+10.555 (tree) 0.9482 0.05176 0
fetal presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal presentation = 3: +8+22 (tree) 0.2742 0.7258 1
if (fp=1 & —pc & primip & ~fd & bw<3349) => 0,
if (p=2) => 1,
if (p=3) => 1.

Greedy vs. Optimal

Optimal
Maximum expected accuracy (test set)
Minimum size tree
Minimum depth tree
Fewest attributes tested
Easiest to understand

XOR problem
Test order not always important for accuracy
Sometimes random splits perform well (acts like KNN)

Cases with missing attribute go down:
— majority case with full weight
— probabilistically chosen branch with full weight
— all branches with partial weight

Decision Tree Predictions

Classification into discrete classes
Simple probability for each class
Smoothed probability

Probability with threshold(s)

10



Performance Measures

Machine Learning LAW #2

* Accuracy
High accuracy doesn’t mean good performance
Accuracy can be misleading
What threshold to use for accuracy?

* Root-Mean-Squared-Error

RMSE =

#test
E (1-Pred_Prob, (True_Classi))2 / #test

\ i=1

‘® - Many other measures: ROC, Precision/Recall, ...

+ Will do lecture on performance measures later in course

A Simple Two-Class Problem

number cases

Classl < —
Class0

N
N
%
t
A\
b
A\

1
x value

From Provost, Domingos pet-mlj 2002

ALWAYS report baseline performance
(and how you defined it if not obvious).

Classification vs. Predicting Probs

class 0 probability

original — -
4.4

C4.5 Estimate -~

x value

From Provost, Domingos pet-mlj 2002

11



® A Harder Two-Class Problem Classification vs. Prob Prediction

Class 0 Probability

class 0 probability
class 0 probability

x value x value
From Provost, Domingos pet-mlj 2002 From Provost, Domingos pet-mlj 2002

Predicting Probabilities with Trees PET: Probability Estimation Trees

* Smooth large trees

* Small Tree
— correct estimates from small samples at leaves

-~ few leaves
o . aqe . C
few discrete probabilities - Average many trees
* Large Tree . — average of many things each with a few discrete values
~ many leaves ‘ is more continuous
- iew Zz.ises per lezti)fb‘l‘ ) i . — averages improve quality of estimates
— few discrete probabilities B
— probability estimates based on small/noisy samples Both

* What to do?




Laplacian Smoothing Bagging (Model Averaging)

Small leaf count: 4+, 1— ¢ Train many trees with different random samples
Maximum Likelihood Estimate: k/N + Average prediction from each tree
~ P(+)=4/5=0.8; P(-)=1/5=0.2? |
Could easily be 3+, 2- or even 2+, 3-, or worse
Laplacian Correction: (k+1)/(N+C)
— P(+) = (4+1)/(5+2) = 5/7=0.7143
~ P(0) = (1+1)/(5+2) =2/7=0.2857
~ IfN=0, P(+)=P(-) = 12
— Bias towards P(class) = 1/C

Results Decision Tree Methods

ID3:

— info gain
[ Systems Wins-Ties-Losses  Avg. diff. (%)  Sign test Wilcoxon test

Cidvs. Cd5 B-1-6 2.0 70 03 - full tree

J C4.4 vs. C4.5-L 13-3- 02 30.0 30,0 - ~ no pruning

C4.5-L vs. C4.5 21-2- 1.7 0.1 0.1 . . .
I CI5B e Ci5 T 73 01 01 CART (Classification and Regression Trees):

C4.4-B vs. C4.4 23-2- 5.3 0.1 0.1 ~ subsetting of discrete attributes (binary tree)

C4.4-B vs. C4.5-B 11-5- —0.1 45.0 50.0 g g

GINI criterion

Table II. Summary of experimental results: AUC comparisons.

— “twoing” criterion for splitting continuous attributes
((Pleft*Pright)*SUM ((P (left)-P (right))?)
— stop splitting when split achieves no gain, or <=5 cases

no pruning or collapsing .
~ cost-complexity pruning: minimize tree error + alpha*no-leaves

Laplacian Smoothing -
bagging = C4:
= — subsetting of discrete attributes (binary tree)
~  gain ratio
— pessimistic pruning
From Provost, Domingos pet-mlj 2002

13



Decision Tree Methods

MML:

— splitting criterion?

— large trees

— Bayesian smoothing
SMM:

— MML tree after pruning

— much smaller trees

— Bayesian smoothing
Bayes:

— Bayes splitting criterion

~ full size tree

— Bayesian smoothing

Advantages of Decision Trees

Popular Decision Tree Packages

TDIDT is relatively fast, even with large data sets (10¢)
and many attributes (10%)

advantage of recursive partitioning: only process all cases at root
Can be converted to rules
TDIDT does feature selection
TDIDT often yields compact models (Occam’s Razor)
Decision tree representation is understandable
Small-medium size trees usually intelligible

ID3 (ID4, IDS5, ...) [Quinlan]
research code with many variations introduced to test new ideas
CART: Classification and Regression Trees [Breiman]
best known package to people outside machine learning
Ist chapter of CART book is a good introduction to basic issues
C4.5 (C5.0) [Quinlan]
most popular package in machine learning community
both decision trees and rules
IND (INDuce) [Buntine]
decision trees for Bayesians (good at generating probabilities)
available from NASA Ames for use in U.S.

Decision Trees are Intelligible

14



Not ALL Decision Trees Are Intelligible Weaknesses of Decision Trees

Large or complex trees can be just as unintelligible as
Part of Best Performing C-Section Decision Tree e other models
Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes...
Don’t handle real-valued parameters as well as Booleans

If model depends on summing contribution of many
different attributes, DTs probably won’t do well

DTs that look very different can be same/similar

Usually poor for predicting continuous values (regression)
Propositional (as opposed to 1st order)

Recursive partitioning: run out of data fast as descend tree

When to Use Decision Trees Current Research

Regression doesn’t work € Increasing representational power to include M-of-N splits,
Model intelligibility is important 3 non-axis-parallel splits, perceptron-like splits, ...

Problem does not depend on many features Ha.ndlmg real-value‘d attributes better
N erlest el o et Eemins el At Using DTs to explain other models such as neural nets

not vision
Speed of learning is important
Missing values
Linear combinations of features not critical Better feature selection
Medium to large training sets : Unequal attribute costs

Incorporating background knowledge
TDIDT on really large datasets

>> 10 training cases
>> 107 attributes

Decision trees optimized for metrics other than accuracy




o Regression Trees vs. Classification

* Split criterion: minimize SSE at child nodes
« Tree yields discrete set of predictions

#test
SSE = ¥ (True, - Pred,)’

i=1

16



