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Supervised Learning

• Decision trees
• Artificial neural nets
• K-nearest neighbor
• Support Vector Machines (SVMs)
• Linear regression
• Logistic regression
• ...

Supervised Learning

• y=F(x): true function (usually not known)
• D: training sample drawn from F(x)

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0           0
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0          1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0          0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0          1
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0           0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0          1
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0            0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0             0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1           1

…

Supervised Learning
Train Set:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0           0

78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0          1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0          0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0          1
84,F,210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0           0
89,F,135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0          1
49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0            0
40,M,205,0,115,90,37,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
74,M,250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0             0
77,F,140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1           1

…

Test Set:
71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0            ?

Supervised Learning

• F(x): true function (usually not known)
• D: training sample drawn from F(x)

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0           0
78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0          1
69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0          0
18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0            0
54,F,135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0          1

• G(x): model learned from training sample D
71,M,160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0            ?

• Goal: E<(F(x)-G(x))2> is small (near zero) for
future test samples drawn from F(x)



2

Decision Trees

A Simple Decision Tree

©Tom Mitchell, McGraw Hill, 1997

Representation

 internal node = 
attribute test

 branch =
attribute value

 leaf node = 
classification

©Tom Mitchell, McGraw Hill, 1997

A Real Decision Tree
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A Real Decision Tree

+833+167 (tree) 0.8327 0.1673 0
fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
|   previous_csection = 0: +767+81 (tree) 0.904 0.096 0
|   |   primiparous = 0: +399+13 (tree) 0.9673 0.03269 0
|   |   primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
|   |   |   fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
|   |   |   |   birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
|   |   |   |   birth_weight >= 3349: +133+36.445 (tree) 0.783 0.217 0
|   |   |   fetal_distress = 1: +34+21 (tree) 0.6161 0.3839 0
|   previous_csection = 1: +55+35 (tree) 0.6099 0.3901 0
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

Small Decision Tree Trained on 1000 Patients:

Real Data: C-Section Prediction

Do Decision Tree Demo Now!

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

Real Data: C-Section Prediction

Demo summary:

collaboration with Magee Hospital, Siemens Research, Tom Mitchell

• Fast
• Reasonably intelligible
• Larger training sample => larger tree
• Different training sample => different tree

• all possible sequences of all possible tests
• very large search space, e.g., if N binary attributes:

– 1 null tree
– N trees with 1 (root) test
– N*(N-1) trees with 2 tests
– N*(N-1)*(N-1) trees with 3 tests
– ≈ N4 trees with 4 tests
– maximum depth is N

• size of search space is exponential in number of attributes
– too big to search exhaustively
– exhaustive search might overfit data (too many models)
– so what do we do instead?

Search Space
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Top-Down Induction of Decision Trees

• TDIDT
• a.k.a. Recursive Partitioning

– find “best” attribute test to install at current node
– split data on the installed node test
– repeat until:

• all nodes are pure
• all nodes contain fewer than k cases
• no more attributes to test
• tree reaches predetermined max depth
• distributions at nodes indistinguishable from chance

What is a Good Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

50+,0- 0+,75-

left right left right

What is a Good Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right

Find “Best” Split?

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right
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Splitting Rules

• Information Gain = reduction in entropy due to
splitting on an attribute

• Entropy = how random the sample looks
•               = expected number of bits needed to

encode class of a randomly drawn + or – example
using optimal information-theory coding

Entropy = − p+ log2 p+ − p− log2 p−

Gain (S,A) = Entropy(S) −
Sv
S
Entropy(Sv )

v∈Values(A)
∑
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Information Gain
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Information Gain

Attribute_1 ?

0 1

50+,75-

40+,15- 10+,60-

Attribute_2 ?

0 1

50+,75-

25+,15- 25+,60-

left right left right

InfoGain = 0.1855                                InfoGain = 0.0493

Splitting Rules

• Problem with Node Purity and Information Gain:
– prefer attributes with many values
– extreme cases:

• Social Security Numbers
• patient ID’s
• integer/nominal attributes with many values (JulianDay)

+ – – + – + + –+. . .

Splitting Rules

€ 

GainRatio(S,A) =
InformationGain
CorrectionFactor
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Splitting Rules

• GINI Index
–  node impurity weighted by node size

€ 

GINInode (Node) =1− [pc ]
2

c∈classes
∑

GINIsplit (A) =
Sv
S
GINI(Nv )

v∈Values(A )
∑

Experiment

• Randomly select # of training cases: 2-1000
• Randomly select fraction of +’s and -’s: [0.0,1.0]
• Randomly select attribute arity: 2-1000
• Randomly assign cases to branches!!!!!
• Compute IG, GR, GINI

. . .

741 cases: 309+, 432-
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GINI Score
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Info_Gain vs. Gain_Ratio

GINI Score vs. Gain_Ratio Attribute Types

• Boolean
• Nominal
• Ordinal
• Integer
• Continuous

– Sort by value, then find best threshold for binary split
– Cluster into n intervals and do n-way split
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Overfitting

©Tom Mitchell, McGraw Hill, 1997

Machine Learning LAW #1

Because performance on data used for
training often looks optimistically good, 
you should NEVER use test data for any
part of learning.

Pre-Pruning (Early Stopping)

• Evaluate splits before installing them:
– don’t install splits that don’t look worthwhile
– when no worthwhile splits to install, done

• Seems right, but:
– hard to properly evaluate split without seeing what

splits would follow it (use lookahead?)
– some attributes useful only in combination with other

attributes (e.g., diagonal decision surface)
– suppose no single split looks good at root node?

Post-Pruning

• Grow decision tree to full depth (no pre-pruning)
• Prune-back full tree by eliminating splits that do

not appear to be warranted statistically
• Use train set, or an independent prune/test set, to

evaluate splits
• Stop pruning when remaining splits all appear to

be warranted
• Alternate approach: convert to rules, then prune

rules
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Converting Decision Trees to Rules

• each path from root to a leaf is a separate rule:

if  (fp=1 & ¬pc & primip & ¬fd & bw<3349)  =>  0,
if  (fp=2)  =>  1,
if  (fp=3)  =>  1.

fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0
|   previous_csection = 0: +767+81 (tree) 0.904 0.096 0
|   |   primiparous = 1: +368+68 (tree) 0.8432 0.1568 0
|   |   |   fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0
|   |   |   |   birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1
fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1 

Missing Attribute Values

• Many real-world data sets have missing values
• Will do lecture on missing values later in course
• Decision trees handle missing values easily/well.

Cases with missing attribute go down:
– majority case with full weight
– probabilistically chosen branch with full weight
– all branches with partial weight

Greedy vs. Optimal

• Optimal
– Maximum expected accuracy (test set)
– Minimum size tree
– Minimum depth tree
– Fewest attributes tested
– Easiest to understand

• XOR problem
• Test order not always important for accuracy
• Sometimes random splits perform well (acts like KNN)

Decision Tree Predictions

• Classification into discrete classes
• Simple probability for each class
• Smoothed probability
• Probability with threshold(s)
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Performance Measures

• Accuracy
– High accuracy doesn’t mean good performance
– Accuracy can be misleading
– What threshold to use for accuracy?

• Root-Mean-Squared-Error

• Many other measures: ROC, Precision/Recall, …
• Will do lecture on performance measures later in course

€ 

RMSE = (1- Pred_Probi(True_Classi)
i=1

# test

∑ )2 # test

Machine Learning LAW #2

ALWAYS report baseline performance
(and how you defined it if not obvious).

A Simple Two-Class Problem

From Provost, Domingos pet-mlj 2002

Classification vs. Predicting Probs

From Provost, Domingos pet-mlj 2002
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A Harder Two-Class Problem

From Provost, Domingos pet-mlj 2002

Classification vs. Prob Prediction

From Provost, Domingos pet-mlj 2002

Predicting Probabilities with Trees

• Small Tree
– few leaves
– few discrete probabilities

• Large Tree
– many leaves
– few cases per leaf
– few discrete probabilities
– probability estimates based on small/noisy samples

• What to do?

PET: Probability Estimation Trees

• Smooth large trees
– correct estimates from small samples at leaves

• Average many trees
– average of many things each with a few discrete values

is more continuous
– averages improve quality of estimates

• Both
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Laplacian Smoothing

• Small leaf count: 4+, 1–
• Maximum Likelihood Estimate: k/N

– P(+) = 4/5 = 0.8;  P(–) = 1/5 = 0.2?
• Could easily be 3+, 2-  or even 2+, 3-,  or worse
• Laplacian Correction: (k+1)/(N+C)

– P(+) = (4+1)/(5+2) = 5/7 = 0.7143
– P(–) = (1+1)/(5+2) = 2/7 = 0.2857
– If N=0, P(+)=P(–) = 1/2
– Bias towards P(class) = 1/C

Bagging (Model Averaging)

• Train many trees with different random samples
• Average prediction from each tree

Results

From Provost, Domingos pet-mlj 2002

C4.4: no pruning or collapsing
“L”: Laplacian Smoothing
“B”: bagging

Decision Tree Methods

• ID3:
– info gain
– full tree
– no pruning

• CART (Classification and Regression Trees):
– subsetting of discrete attributes (binary tree)
– GINI criterion
– “twoing” criterion for splitting continuous attributes

((Pleft*Pright)*SUMc((Pc(left)-Pc(right))2)
– stop splitting when split achieves no gain, or <= 5 cases
– cost-complexity pruning: minimize tree error + alpha*no-leaves

• C4:
– subsetting of discrete attributes (binary tree)
– gain ratio
– pessimistic pruning
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Decision Tree Methods

• MML:
– splitting criterion?
– large trees
– Bayesian smoothing

• SMM:
– MML tree after pruning
– much smaller trees
– Bayesian smoothing

• Bayes:
– Bayes splitting criterion
– full size tree
– Bayesian smoothing

Popular Decision Tree Packages

• ID3 (ID4, ID5, …) [Quinlan]
– research code with many variations introduced to test new ideas

• CART: Classification and Regression Trees [Breiman]
– best known package to people outside machine learning
– 1st chapter of CART book is a good introduction to basic issues

• C4.5 (C5.0) [Quinlan]
– most popular package in machine learning community
– both decision trees and rules

• IND (INDuce) [Buntine]
– decision trees for Bayesians (good at generating probabilities)
– available from NASA Ames for use in U.S.

Advantages of Decision Trees

• TDIDT is relatively fast, even with large data sets (106)
and many attributes (103)
– advantage of recursive partitioning: only process all cases at root

• Can be converted to rules
• TDIDT does feature selection
• TDIDT often yields compact models (Occam’s Razor)
• Decision tree representation is understandable
• Small-medium size trees usually intelligible

Decision Trees are Intelligible
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Not ALL Decision Trees Are Intelligible

Part of Best Performing C-Section Decision Tree

Weaknesses of Decision Trees

• Large or complex trees can be just as unintelligible as
other models

• Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes…

• Don’t handle real-valued parameters as well as Booleans
• If model depends on summing contribution of many

different attributes, DTs probably won’t do well
• DTs that look very different can be same/similar
• Usually poor for predicting continuous values (regression)
• Propositional (as opposed to 1st order)
• Recursive partitioning: run out of data fast as descend tree

When to Use Decision Trees

• Regression doesn’t work
• Model intelligibility is important
• Problem does not depend on many features

– Modest subset of features contains relevant info
– not vision

• Speed of learning is important
• Missing values
• Linear combinations of features not critical
• Medium to large training sets

Current Research

• Increasing representational power to include M-of-N splits,
non-axis-parallel splits, perceptron-like splits, …

• Handling real-valued attributes better
• Using DTs to explain other models such as neural nets
• Incorporating background knowledge
• TDIDT on really large datasets

– >> 106 training cases
– >> 103 attributes

• Better feature selection
• Unequal attribute costs
• Decision trees optimized for metrics other than accuracy
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Regression Trees vs. Classification

• Split criterion: minimize SSE at child nodes
• Tree yields discrete set of predictions

€ 

SSE = (Truei
i=1

# test

∑ −Predi)
2


