

```
Converting Decision Trees to Rules

• each path from root to a leaf is a separate rule:

fetal_presentation = 1: +822+116 (tree) 0.8759 0.1241 0

| previous_csection = 0: +767+81 (tree) 0.904 0.096 0

| primiparous = 1: +368+68 (tree) 0.8432 0.1568 0

| | fetal_distress = 0: +334+47 (tree) 0.8757 0.1243 0

| | | birth_weight < 3349: +201+10.555 (tree) 0.9482 0.05176 0

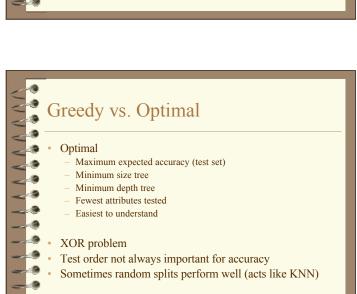
fetal_presentation = 2: +3+29 (tree) 0.1061 0.8939 1

fetal_presentation = 3: +8+22 (tree) 0.2742 0.7258 1

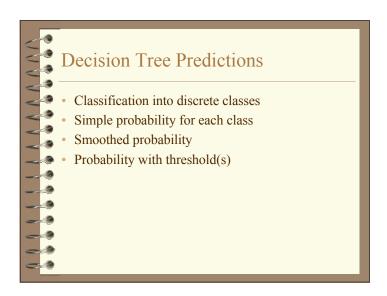
if (fp=1 \& \neg pc \& primip \& \neg fd \& bw < 3349) => 0,

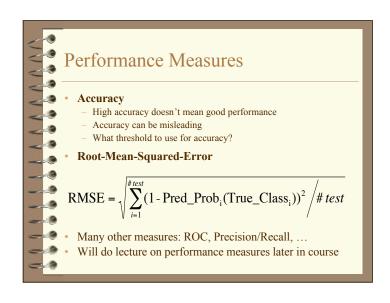
if (fp=2) => 1,

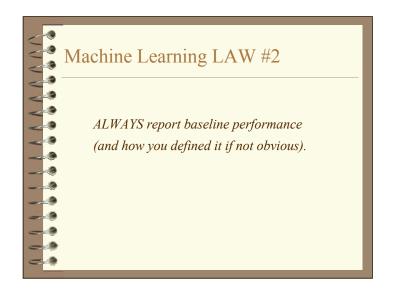
if (fp=3) => 1.
```

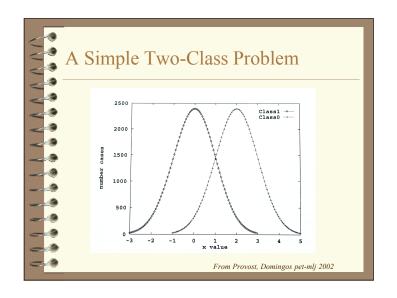


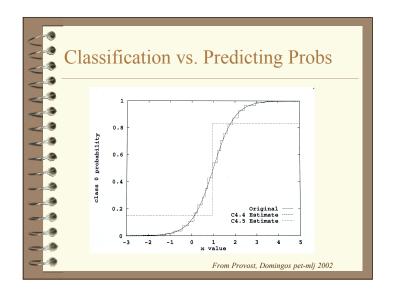
Missing Attribute Values Many real-world data sets have missing values Will do lecture on missing values later in course Decision trees handle missing values easily/well. Cases with missing attribute go down: majority case with full weight probabilistically chosen branch with full weight all branches with partial weight

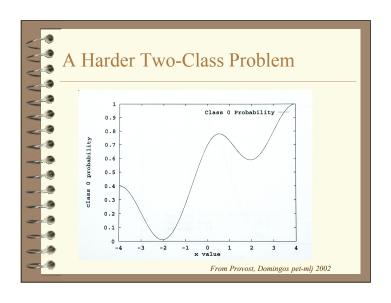


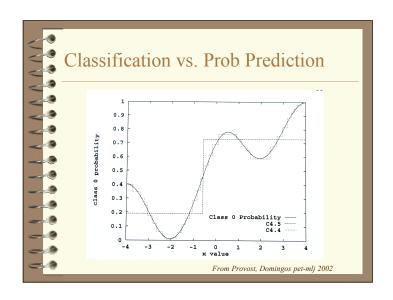


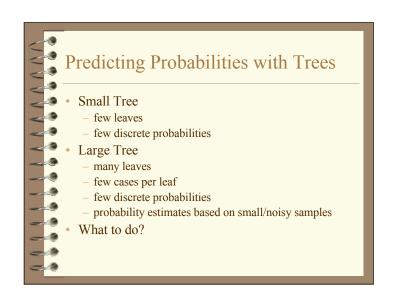


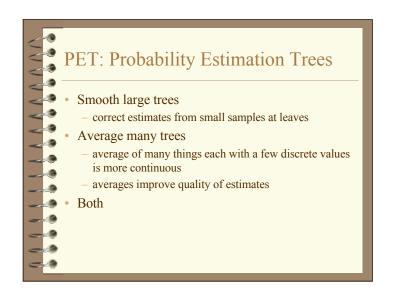


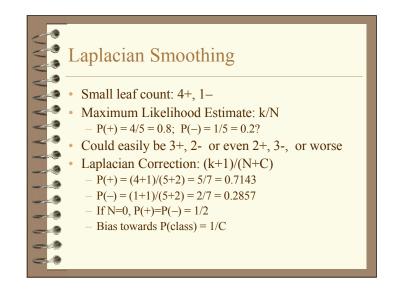


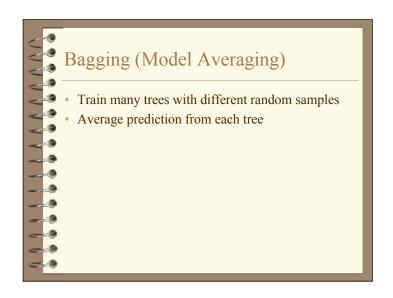


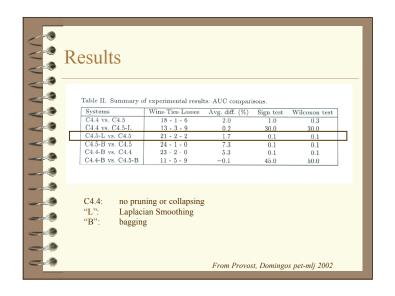


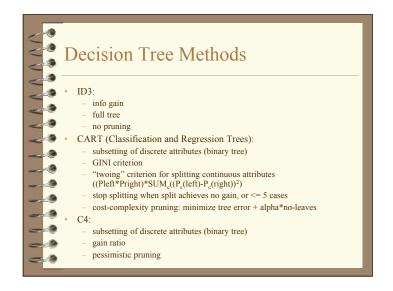


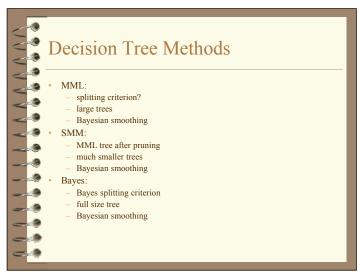


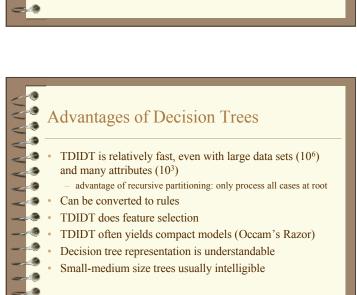


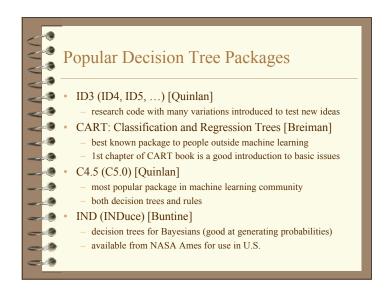


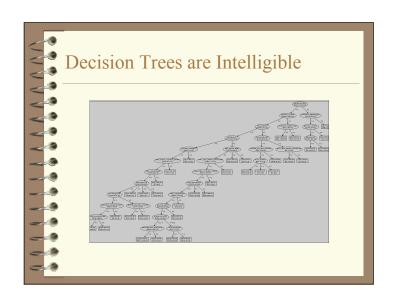


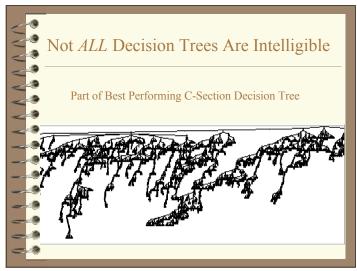


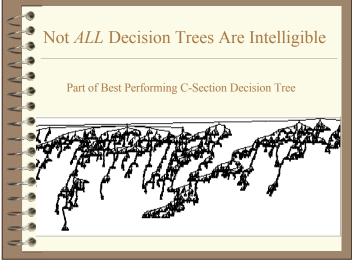












When to Use Decision Trees Regression doesn't work Model intelligibility is important Problem does not depend on many features Modest subset of features contains relevant info not vision Speed of learning is important Missing values Linear combinations of features not critical Medium to large training sets

Weaknesses of Decision Trees Large or complex trees can be just as unintelligible as other models Trees don't easily represent some basic concepts such as M-of-N, parity, non-axis-aligned classes... Don't handle real-valued parameters as well as Booleans If model depends on summing contribution of many different attributes, DTs probably won't do well DTs that look very different can be same/similar Usually poor for predicting continuous values (regression) Propositional (as opposed to 1st order) Recursive partitioning: run out of data fast as descend tree

Current Research Increasing representational power to include M-of-N splits, non-axis-parallel splits, perceptron-like splits, ... Handling real-valued attributes better Using DTs to explain other models such as neural nets Incorporating background knowledge TDIDT on really large datasets >> 10⁶ training cases >> 10³ attributes Better feature selection Unequal attribute costs Decision trees optimized for metrics other than accuracy

Regression Trees vs. Classification

- Split criterion: minimize SSE at child nodes
- Tree yields discrete set of predictions

$$SSE = \sum_{i=1}^{\#test} (True_i - Pred_i)^2$$