
Live ObjectsLive ObjectsLive ObjectsLive Objects

Krzys Ostrowski, Ken Birman, Danny DolevKrzys Ostrowski, Ken Birman, Danny Dolev

Cornell University, Hebrew University*

(*) Others are also involved in some aspects of this project… I’ll
mention them when their work arises…

Live Objects in an Active WebLive Objects in an Active Web

Imagine a world of Live Objects .Imagine a world of Live Objects….

…. and an Active Web created with “drag and drop”

Live Objects in an Active WebLive Objects in an Active Web

Imagine a world of Live Objects .Imagine a world of Live Objects….

…. and an Active Web created with “drag and drop”

Live Objects in an Active WebLive Objects in an Active Web

User builds applications much like powerpointUser builds applications much like powerpoint
• Drag things onto a “live document” or desktop
• Customize them via a properties sheetp p
• Then share the live document

Opening a document “joins” a session
• New instance can obtain a state checkpoint
• All see every update…
• Platform offers privacy, security, reliability properties

When would they be useful?When would they be useful?

Build a disaster response system…
… in the field (with no programming needed!)
Coordinated planning and plan execution
Create role-playing simulations, games
Integrate data from web services into
databases, spreadsheets
Visualize complex distributed state
Track business processes, status of major
projects, even state of an application

Big deal?Big deal?

We think so!We think so!
• It is very hard to build distributed systems today. If

non-programmers can do the job numbers of such
applications will soar

• Live objects are robust to the extent that our platform
is able to offer properties such as security privacyis able to offer properties such as security, privacy
protection, fault-tolerance, stability

Live objects might be a way to motivate users to j g y
adopt a trustworthy technology

The drag and drop worldThe drag and drop world

It needs a global namespace of objectsIt needs a global namespace of objects
• Video feeds, other data feeds, live maps, etc…
• Our thinking: download them from a repository or g p y

(rarely) build new ones

Users make heavy use of live documents, share
h k d f l bother kinds of live objects

And this gives rise to a world with
• Lots of live traffic, huge numbers of live objects
• Any given node may be “in” lots of object groups

Overlapping groupsOverlapping groups

Control Events

Background Radar Images

ATC events
Radar track updates

Background Radar Images

Multicast groups
supporting live Radar track updates

Weather notifications
objects

Nodes running
live applications

… posing technical challenges… posing technical challenges

How can we build a system thatHow can we build a system that…
• Can sustain high data rates in groups
• Can scale to large numbers of overlapping groupsg pp g g p
• Can guarantee reliability and security properties

Existing multicast systems can’t solve these
problems!

Existing technologies won’t work…Existing technologies won’t work…

Kind of technology Why we rejected it

IP multicast, pt-to-pt TCP Too many IPMC addrs. Too many TCP streams

Software group multicast
l i (“h i h ”)

Protocols designed for just one group at a time;
h d I bili i l d lsolutions (“heavyweight”) overheads soar. Instability in large deployments

Lightweight groups Nodes get undesired traffic, data sent indirectly

P bli h b ib b U t bl i l d l t d t t i di tlPublish-subscribe bus Unstable in large deployments, data sent indirectly

Content-filtering event
notification.

Very expensive. Nodes see undesired traffic.
High latency paths are commonnotification. High latency paths are common

Peer-to-peer overlays Similar to content-filtering scenario

Steps to a new system!Steps to a new system!

1. First, we’ll look at group overlap and will show that we , g p p
can simplify a system with overlap and focus on a single
“cover set” with a regular, hierarchical overlap

2. Next, we’ll design a simple fault-tolerance protocol for
high-speed data delivery in such systems

3. We’ll look at its performance (and arrive at surprising
insights that greatly enhance scalability under stress)g g y y)

4. Last, ask how our solution can be enhanced to address
need for stronger reliability securityneed for stronger reliability, security

Coping with Group OverlapCoping with Group Overlap

In a nutshell:In a nutshell:
• Start by showing that even if groups overlap in an

irregular way, we can “decompose” the structure into
a collection of overlayed “cover sets”

• Cover sets will have regular overlap
Clean hierarchical inclusionClean, hierarchical inclusion
Other good properties

Regular OverlapRegular Overlap

groups

nodes

Likely to arise in a data center that replicates services
and automates layout of services on nodes

Live Objects Live Objects ⇒⇒ Irregular overlapIrregular overlap

Likely because users will have different interestsLikely because users will have different interests…

Tiling an irregular overlapTiling an irregular overlap

Build some (small) number of regularly u d so e (s a) u be o egu a y
overlapped sets of groups (“cover sets”) s.t.
• Each group is in one cover set
• Cover sets are nicely hierarchical
• Traffic is as concentrated as possible

Seems hard: O(2G) possible cover sets
f ’ d l d l lIn fact we’ve developed a surprisingly simple

algorithm that works really well. Ymir Vigfusson
has been helping us study this:has been helping us study this:

Algorithm in a nutshellAlgorithm in a nutshell

1 Remove tiny groups and collapse identical ones1. Remove tiny groups and collapse identical ones
2. Pick a big, busy group

1. Look for another big, busy group with extensive overlap1. Look for another big, busy group with extensive overlap
2. Given multiple candidates, take the one that creates the

largest “regions of overlap”

3. Repeat within overlap regions (if large enough)

A BA B

Nodes only in
group A

Nodes only in
group B

Nodes in
A and B

Why this worksWhy this works

in general, it wouldn’t work!… in general, it wouldn t work!
But many studies suggest that groups would have
power-law popularity distributionspower law popularity distributions
• Seen in studies of financial trading systems, RSS feeds
• Explained by “preferential attachment” models

In such cases the overlap has hidden structure…
and the algorithm finds it!

It also works exceptionally well for obvious cases
such as exact overlap or hierarchical overlap

It works remarkably wellIt works remarkably well!!

Lots of processes join 10% of thousands ofLots of processes join 10% of thousands of
groups with Zipf-like (α=1.5) popularity….
15

de

2000

e
in

on
s

H il l d d

6

9

12

eg
io
ns
 /
 n
od

500

1000

1500

de
s t
ha

t a
re

s m
an

y
re
gi
o Heavily loaded

total

3

1 2 3 4 5 6 7 8 9 10

re

number of groups (thousands)

250 500 750 1000 2000

0

1 4 7 10 13 16 19 22 25 28

no
d

th
is

regions / node
ll i 95% t l d d i250 500 750 1000 2000 all regions 95% most loaded regions

Nodes end up in very few
i (100 1 ti)

And even fewer “busy”
i (1000 1 ti)!regions (100:1 ratio…) regions (1000:1 ratio)!

Effect of different stagesEffect of different stages

Each step of the algorithm “concentrates” loadEach step of the algorithm concentrates load

Initial groups

Remove small or
identical groups

Run algorithm

… but not always… but not always

It works very poorly with “uniform random”It works very poorly with uniform random
topic popularity
It works incredibly well with artificially generatedIt works incredibly well with artificially generated
power-law popularity of a type that might arise
in some real systems, or with artificial group
layouts (as seen in IBM Websphere)
But the situation for human preferential

h l hattachment scenarios is unclear right now…
we’re studying it

Digression: Power Laws…Digression: Power Laws…

Zipf: Popularity of k’th-ranked group ≈ 1/kαZipf: Popularity of k th ranked group ≈ 1/k

A “law of nature”

ZipfZipf--like thingslike things

Web page visitors, outlinks, inlinksWeb page visitors, outlinks, inlinks
File sizes
Popularity and data rates for equity pricesPopularity and data rates for equity prices
Network traffic from collections of clients
Frequency of word use in natural languageFrequency of word use in natural language
Income distribution in Western society

and many more things… and many more things

Dangers of “common belief”Dangers of “common belief”

Everyone knows that if something is Zipf-like,Everyone knows that if something is Zipf like,
instances will look like power-law curves

Reality? These models are just approximate…
• With experimental data, try and extract statistically p , y y

supported “model”
• With groups, people plot log-log graphs (x axis is the

t i l it k d i t b ib)topic popularity, ranked; y-axis counts subscribers)
• Gives something that looks more or less like a straight

line… with a lot of noisee t a ot o o se

Dangers of “common belief”Dangers of “common belief”

* ** *

Power
law with
α = 2.1

* * *

*

*
* * *

*
*

*

* *

*

*

* *

* * * *

*

*

But…But…

Much of the structure is in the noiseMuch of the structure is in the noise

Would our greedy algorithm work on “realWould our greedy algorithm work on real
world” data?
• Hard to know: Live Objects aren’t widely used in the j y

real world yet
• For some guesses of how the real world would look,

th i fi di l ith h ld k f ththe region-finding algorithm should work… for others,
it might not… a mystery until we can get more data!

When in doubt…. Why not just
b ild d h i d ?build one and see how it does?

Building Our SystemBuilding Our System

First, build a live objects frameworkst, bu d a e objects a e o
• Basically, a structure for composing components
• Has a type system and a means of “activating”

components The actual components may not requirecomponents. The actual components may not require
code, but if they do, that code can be downloaded
from remote sites

User “opens” live documents or applications
• … this triggers our runtime system, and it activates

the objectsthe objects
The objects make use of communication streams
that are themselves live objectsj

ExampleExample

Even our airplanesEven our airplanes
were mashups
Four objects (at

XNA display interface

Four objects (at
least), with
type-checked

Airplane Model

GPS di t (t)event channels
connecting them

ll

GPS coordinates (x,y,z,t)

Multicast protocolMost apps will
use a lot of objects…

Multicast protocol

When is an “X” an object?When is an “X” an object?

Given choice of implementing X or A+BGiven choice of implementing X or A+B…
• Use one object if functionality is “contained”
• Use two or more if there is a shared function and

then a plug-in specialization function

Idea is a bit like plug-and-play device drivers

Enables us to send an object to a strange
environment and then configure it on the fly to

o k p ope l in that pa tic la settingwork properly in that particular setting

Type checkingType checking

Live objects are type-checkedLive objects are type checked
• Each component exposes interfaces
• Events travel on these, and have types, yp
• … types must match

In addition, objects may constraint their peers
• I expect this from my peer
• I provide this to my peer
• Here’s a checker I would like to use

Multiple opportunities for checking
• Design time… mashup time… runtime

ReflectionReflection

At runtime, canAt runtime, can
• Generate an interface: B’s interface just for A
• Substitute a new object: B’ replaces Bj p
• Interpose an object: A+B becomes A+B’+B

Tremendously flexible and powerful
• But does raise some complicated security issues!

Overall architectureOverall architecture

User-VisibleUser Visible
Application

Objects

Live Objects Platform

QuickSilver Ricochet GossipQuickSilver
Scalable
Multicast

Ricochet
Time-Critical

Multicast

Gossip
Objects
Plaform

So… why will it scale?So… why will it scale?

Many dimensions that matterMany dimensions that matter
• Lots of live objects on one machine, maybe using

multicore
• Lots of machines using lots of objects

In remainder of talk focus on multicast scaling…

Building QSMBuilding QSM

Given an “enterprise” (for now, LAN-based)Given an enterprise (for now, LAN based)
• Build a “map” of the nodes in the system
• … annotated by the live objects running on eachy j g

Feed this into our cover set algorithm… it will
output a set of covers

Each node instantiates QSM to build the needed
communication infrastructure for those covers

Building QSMBuilding QSM

Given a regular cover set, break it into regionsGiven a regular cover set, break it into regions
of identical group membership
Assign each region its own IP multicast addressAssign each region its own IP multicast address

Building QSMBuilding QSM

To send to a group, multicast to regions it spansTo send to a group, multicast to regions it spans

If ibl t t ffi i t h iIf possible, aggregate traffic into each region

Building QSM

A hierarchical recovery architecture recoversA hierarchical recovery architecture recovers
from message loss without overloading sender

… memory footprint: a key issue… memory footprint: a key issue

At high data rates, performance is dominated byAt high data rates, performance is dominated by
the reliability protocol
Its latency turns out to be a function ofIts latency turns out to be a function of

1. Ring size and hierarchy depth,
2. CPU loads in QSM,
3. Memory footprint of QSM (!!)

This third factor was crucial… it turned out to
determine the other two!determine the other two!
QSM has a new “memory minimizing” design

… oscillatory behavior… oscillatory behavior

We also struggled with a form of thrashingWe also struggled with a form of thrashing

12000

6000
8000
10000
12000

ge
s /
s

0
2000
4000
6000

m
es
sa
g

0

250 400 550 700 850
time (s)

Overcoming oscillatory behaviorOvercoming oscillatory behavior

Essence of the problem:Essence of the problem:
• Some message gets dropped
• But the recovery packet is delayed by other datay p y y
• By the time the it arrives… a huge backload forms
• The repair event triggers a surge overload… causing

l Th b i illmore loss. The system begins to oscillate

A form of priority inversion!

Overcoming oscillatory behaviorOvercoming oscillatory behavior

Solution mimics emergency vehicles on a
crowded roadway: pull over and let them past!crowded roadway: pull over and let them past!

The bottom line? It works!The bottom line? It works!

QSM sustains high data rates (even under

10000

QSM sustains high data rates (even under
stress) and scales well….

9000
9500
10000

ge
s /

 s

8000
8500

m
es
sa
g

7500

0 50 100 150 200
b f dnumber of nodes

1 sender 2 senders

The bottom line? It works!The bottom line? It works!

and with the number of groups (topics)Scalability limited by memory & … and with the number of groups (topics)

8000

y y y
CPU loads at the sender…
… as confirmed by artificially

inflating sender’s per-group costs

7500

8000

ge
s /

 s

6500

7000

m
es
sa

6500

0 2000 4000 6000 8000
number of topicsnumber of topics

normal "heavyweight" (profiling on)

What next?What next?

Live objects in WAN settings with enrichedLive objects in WAN settings… with enriched
language support for extensions

Gossip Objects
Pl tf

Configuration
PlatformMgt. Svc

Port to Linux PPLive/LO

Properties
F kFramework

Learning moreLearning more

http://liveobjects.cs.cornell.edu

