Designing a New Multicast
Infrastructure for Linux

Ken Birman

Cornell University. CS5410 Fall 2008.

Mission Impossible...

* Today, multicast is persona non-grata
in most cloud settings

e Amazon’s stories of their experience with violent load
oscillations has frightened most people in the industry

e They weren't the only ones...
* Today:

e Design a better multicast infrastructure for using the
Linux Red Hat operating system in enterprise settings

 Target: trading floor in a big bank (if any are left) on
Wall Street, cloud computing in data centers

P———

What do they need?

* Quick, scalable, pretty reliable message delivery
e Argues for IPMC or a protocol like Ricochet

e Virtual synchrony, Paxos, transactions: all would be
examples of higher level solutions running over the
basic layer we want to design

* But we don’t want our base layer to misbehave

P

Reminder: What goes wrong?

e Earlier in the semester we touched on the issues with
[PMC in existing cloud platforms

e Applications unstable, exhibit violent load swings

e Usually totally lossless, but sometimes drops zillions of
packets all over the place

e Various forms of resource exhaustion

e Start by trying to understand the big picture: why is
this happening?

Misbehavior pattern

* Noticed when an application-layer solution, like a
virtual synchrony protocol, begins to exhibit wild load
swings for no obvious reason

QSM oscillated in this 200-node experiment when its
damping and prioritization mechanisms were disabled

e For example,

we saw this in QSM 12000
(Quicksilver » 10000 -
: » 8000
Scalable Multicast) & HI{# I u ﬂo Iy
= & 6000 T
e Fixing the problem 2 4000 | | :
at the end-to-end € 2000 4
layer was really hard! 0
250 400 550 700 850
time (s)

P ———

Tracking down the culprit
* Why was QSM acting this way?

e When we started work, this wasn't easy to fix...
e ... issue occurred only with 200 nodes and high data rates

* But we tracked down a pattern

e Under heavy load, the network was delivering packets to
our receivers faster than they could handle them

e Caused kernel-level queues to overflow... hence wide loss
e Retransmission requests and resends made things worse

e So: goodput drops to zero, overhead to infinity. Finally
problem repaired and we restart... only to do it again!

P ———

Aside: QSM works well now

* We did all sorts of things to stabilize it
e Novel “minimal memory footprint” design
* Incredibly low CPU loads minimize delays

e Prioritization mechanisms ensure that lost data is
repaired first, before new good data piles up behind gap

* But most systems lack these sorts of unusual solutions

e Hence most systems simply destabilize, like QSM did
before we studied and fixed these issues!

e Linux goal: a system-wide solution

P

Assumption?

» Assume that if we enable IP multicast
e Some applications will use it heavily
e Testing will be mostly on smaller configurations

* Thus, as they scale up and encounter loss, many will be
at risk of oscillatory meltdowns

e Fixing the protocol is obviously the best solution...

e ... but we want the data center (the cloud) to also protect
itself against disruptive impact of such events!

So why did receivers get so lossy?

* To understand the issue, need to understand history of
network speeds and a little about the hardware

(4) NIC sends. (5) NIC receives...

liTuwrrroet

(3) Enqueued for (6) Copied into a handy
send mbuf

1 (2) Ufg; ;C};llst Shfta| (7) UDP queues on socket | \

o

(1) App sends pad (8) App receives %

\i\ *

L | — — ~

P ———

Network speeds

* When Linux was developed, Ethernet ran at 10Mbits
and NIC was able to keep up

e Then network sped up: 100Mbits common, 1Gbit more
and more often seen, 10 or 40 “soon”

e But typical PCs didn’t speed up remotely that much!

* Why did PC speed lag?
e Ethernets transitioned to optical hardware

e PCs are limited by concerns about heat, expense. Trend
favors multicore solutions that run slower... so why
invest to create a NIC that can run faster than the bus?

P

NIC as a “rate matcher”

* Modern NIC has two sides running at different rates
e Ethernet side is blazingly fast, uses ECL memory...

e Main memory side is slower

* So how can this work?

e Key insight: NIC usually receives one packet, but then
doesn’t need to accept the “next” packet.

e Gives it time to unload the incoming data
e But why does it get away with this?

P ———

NIC as a “rate matcher”

* When would a machine get several back-to-back
packets?

e Server with many clients

e Pair of machines with a stream between them: but here,
limited because the sending NIC will run at the speed of
its interface to the machine’s main memory - in today’s
systems, usually 100MBits

* In a busy setting, only servers are likely to see back-to-
back traffic, and even the server is unlikely to see a
long run packets that it needs to accept!

P

... SO0 normally

* NIC sees big gaps between messages it needs to accept
* This gives us time...

e ... for OS to replenish the supply of memory bufters
e to hand messages off to the application

¢ In effect, the whole “system” is well balanced
e But notice the hidden assumption:

e All of this requires that most communication be point-to-
point... with high rates of multicast, it breaks down!

P ———

Multicast: wrench in the works

* What happens when we use multicast heavily?

e A NIC that on average received 1 out of k packets
suddenly might receive many in a row (just thinking in
terms of the “odds”)

e Hence will see far more back-to-back packets 2. O%

&

* But this stresses our speed limits

e NIC kept up with fast network traffic partly because it
rarely needed to accept a packet... letting it match the
fast and the slow sides...

e With high rates of incoming traffic we overload it

Intuition: like a highway off-ramp

* With a real highway, cars just
end up in a jam

* With a high speed optical net
coupled to a slower NIC, packets
are dropped by receiver!

P

More NIC worries

* Next issue relates to implementation of multicast

* Ethernet NIC actually is a pattern match machine
e Kernel loads it with a list of {mask,value} pairs
e Incoming packet has a destination address
e Computes (dest&mask)==value and if so, accepts

* Usually has 8 or 16 such pairs available

P ———

More NIC worries

e If the set of patterns is full... kernel puts NIC into what
we call “promiscuous” mode

e It starts to accept all incoming traffic
e Then OS protocol stack makes sense of it

o If not-for-me, ignore
e But this requires an interrupt and work by the kernel
* All of which adds up to sharply higher
e CPU costs (and slowdown due to cache/TLB effects)

 Loss rate, because the more packets the NIC needs to
receive, the more it will drop due to overrunning queues

More NIC worries

* We can see this effect in an experiment done by Yoav
Tock at IBM Research in Haifa

Packet loss rate %

5 10 20 50 100 200 250 300

What about the switch/router?

* Modern data centers used a switched network
architecture

®,.

® Question to ask: how does a switch handle multicast?

P————

Concept of a Bloom filter

® Goal of router?

e Packet p arrives on port a. Quickly decide which port(s)
to forward it on

* Bit vector filter approach

e Take IPMC address of p, hash it to a value in some range
like [0..1023]

e Each output port has an associated bit vector... Forward
p on each port with that bit set

e Bitvector -> Bloom filter

e Just do the hash multiple times, test against multiple
vectors. Must match in all of them (reduces collisions)

Concept of a Bloom filter

* So... take our class-D multicast address (233.0.0.0/8)

* 233.17.31.129... hash it 3 times to a bit number
e Now look at outgoing link A

» Check bit 19 in |....0101010010000001010000010101000000100000.... |
» Check bit 33 in [.... 101000001010100000010101001000000100000....]
o Check bit8in [....0000001010100000011010100100000010100000..]
e ...all matched, so we relay a copy

e Next look at outgoing link B

... match failed

e FIC

What about the switch/router?

* Modern data centers used a switched network
architecture

®,.

® Question to ask: how does a switch handle multicast?

P———

Aggressive use of multicast

* Bloom filters “fill up” (all bits set)
e Not for a good reason, but because of hash conflicts

* Hence switch becomes promiscuous

e Forwards every multicast on every network link

* Amplifies problems confronting NIC, especially if NIC
itself is in promiscuous mode

Worse and worse...

* Most of these mechanisms have long memories

e Once an IPMC address is used by a node, the NIC tends
to retain memory of it, and the switch does, for a long
time

e This is an artifact of a “stateless” architecture
» Nobody remembers why the IPMC address was in use
 Application can leave but no “delete” will occur for a while

* Underlying mechanisms are lease based: periodically
“replaced” with fresh data (but not instantly)

..pulling the story into focus

* We've seen that multicast loss phenomena can
ultimately be traced to two major factors

e Modern systems have a serious rate mismatch vis-a-vis
the network

e Multicast delivery pattern and routing mechanisms
scale poorly

* A better Linux architecture needs to
e Allow us to cap the rate of multicasts
e Allow us to control which apps can use multicast
e Control allocation of a limited set of multicast groups

P

Dr. Multicast (the MCMD)

* Rx for your multicast woes

* Intercepts use of IPMC

e Does this by library interposition exploiting a feature of
DLL linkage

e Then maps the logical IPMC address used by the
application to either
« A set of point-to-point UDP sends
A physical IPMC address, for lucky applications

e Multiple groups share same IPMC address for efficiency

P

Criteria used

* Dr Multicast has an “acceptable use policy”

e Currently expressed as low-level firewall type rules, but
could easily integrate with higher level tools

* Examples
e Application such-and-such can/cannot use IPMC

e Limit the system as a whole to 50 [IPMC addresses

* Can revoke IPMC permission rapidly in case of trouble

How it works
* Application uses IPMC

source

IPMC

UDP B
multicast
interface

Socket
interface

Receiver (one of many)

How it works
* Application uses IPMC

Receiver (one of many)

source
Replace UDP multicast
IPMC with some other multicast
event protocol, like Ricochet
multicast 7
interface ~Socket
interface

UDP multicast interface

* Very similar: With UDP

e Socket() - creates a socket

e Bind() connects that socket to the UDP multicast
distribution network

e Sendmsg/recvmsg() - send data

UDP multicast interface

* Very similar: With UDP

e Socket() - creates a socket

e Bind() connects that socket to the UDP multicast
distribution network

e Sendmsg/recvmsg() - send data

Mimicry
* Many options could mimic [PMC

e Point to point UDP or TCP, or even HTTP

e Overlay multicast
e Ricochet (adds reliability)

* MCMD can potentially swap any of these in under user
control

P

Optimization
* Problem of finding an optimal group to IPMC
mapping is surprisingly hard
e Goal is to have an “exact mapping” (apps receive exactly

the traffic they should receive). Identical groups get the
same [PMC address

e But can also fragment some groups....

SE o=

e Should we give an IPMC address to A, to B, to AnB?
* Turns out to be NP complete!

P

Greedy heuristic

* Dr Multicast currently uses a greedy heuristic

e Looks for big, busy groups and allocates IPMC addresses
to them first

e Limited use of group fragmentation

e We've explored more aggressive options for fragmenting
big groups into smaller ones, but quality of result is very
sensitive to properties of the pattern of group use

* Solution is fast, not optimal, but works well

Flow control

* How can we address rate concerns?

e A good way to avoid broadcast storms is to somehow
suppose an AUP of the type “at most xx IPM(C/sec”

e Two sides of the coin

e Most applications are greedy and try to send as fast as
they can... but would work on a slower or more
congested network.

» For these, we can safely “slow down” their rate

e But some need guaranteed real-time delivery

« Currently can’t even specify this in Linux

Flow control

* Approach taken in Dr Multicast

e Again, starts with an AUP
» Puts limits on the aggregate IPMC rate in the data center
« And can exempt specific applications from rate limiting

* Next, senders in a group monitor traffic in it
e Conceptually, happens in the network driver

* Use this to apportion limited bandwidth
e Sliding scale: heavy users give up more

P————

Flow control

* To make this work, the kernel send layer can delay
sending packets...

e ...and to prevent application from overrunning the
kernel, delay the application

e For sender using non-blocking mode, can drop packets
if sender side becomes overloaded

* Highlights a weakness of the standard Linux interface

e No easy way to send “upcalls” notifying application
when conditions change, congestion arises, etc

The “AJIL” protocol in action

* Protocol adds a rate
limiting module to the
Dr Multicast stack

* Uses a gossip-like
mechanism to figure
out the rate limits

* Work by Hussam Abu-
Libdeh and others in
my research group

Traffic (KBSf=)

398

388

258

208

158

108

o8 r

IPHC Traffic w/ AJIL

IPHC before AJIL
IPHC after AJIL
Desired Linit

y J.|1|||H|I.||_ R MLH.‘ |

Al [RTLO L "|||,
| 'h ”| |-|||| .'4 |I ‘
| | |

a 208 468 608 Goa 1a68

Tine

P

Fast join/leave patterns

* Currently Dr Multicast doesn’t do very much if
applications thrash by joining and leaving groups
rapidly

e We have ideas on how to rate limit them, and it seems
like it won't be hard to support

e Real question is: how should this behave?

P ———

End to End philosophy / debate

* In the dark ages, E2E idea was proposed as a way to
standardize rules for what should be done in the
network and what should happen at the endpoints

* In the network?

e Minimal mechanism, no reliability, just routing

e (Idea is that anything more costs overhead yet end
points would need the same mechanisms anyhow, since
best guarantees will still be too weak)

* End points do security, reliability, flow control

P

A religion... but inconsistent...

* E2E took hold and became a kind of battle cry of the
Internet community

* But they don'’t always stick with their own story
e Routers drop packets when overloaded

e TCP assumes this is the main reason for loss and backs
down

* When these assumptions break down, as in wireless or
WAN settings, TCP “out of the box” performs poorly

P ———

E2E and Dr Multicast

* How would the E2E philosophy view Dr Multicast?

e On the positive side, the mechanisms being interposed
operate mostly on the edges and under AUP control

e On the negative side, they are network-wide
mechanisms imposed on all users

* Original E2E paper had exceptions, perhaps this falls
into that class of things?
e F2F except when doing something something in the

network layer brings big win, costs little, and can't be
done on the edges in any case...

P

Summary

* Dr Multicast brings a vision of a new world of
controlled IPMC

e Operator decides who can use it, when, and how much

e Data center no longer at risk of instability from
malfunctioning applications

e Hence operator allows IPMC in: trust (but verify, and if
problems emerge, intervene)

* Could reopen door for use of IPMC in many settings

