Byzantine Agreement

Yee Jiun Song

Cornell University. CS5410 Fall 2008.




——,

Fault Tolerant Systems

* By now, probably obvious that systems
reliability/availability is a key concern

* Downtime is expensive

* Replication is a general technique for providing
fault tolerance



Replication

unreplicated service

client

server




Replication

unreplicated service replicated service

1

client client

server

server :
replicas




Replication

* Applications as deterministic state machines

* Reduce the problem of replication to that of agreement

* Ensure that replicas process requests in the same
order:
e Safety: clients never observe inconsistent behavior

e Liveness: system is always able to make progress



P

Traditional Assumptions

* Synchrony
* Bounded difference in CPU speeds
e Bounded time for message delivery

* Benign/Crash faults

e When machines fail, they stop producing output
immediately, and forever.

What if these assumptions don’t hold?



P————

Asynchrony

¢ In the real world, systems are never quite as
synchronous as we would like

* Asynchrony is a pessimistic assumption to capture real
world phenomenon

e Messages will eventually be delivered, processors will
eventually complete computation. But no bound on
time.

* In general:
e OK to assume synchrony when providing liveness
e Dangerous (NOT OK) to assume synchrony for safety



P

Byzantine Faults

* Crash faults are a strong assumption
¢ In practice, many kinds of problems can manifest:
e Bit flip in memory
e Intermittent network errors
e Malicious attacks
* Byzantine faults: strongest failure model
e Completely arbitrary behavior of faulty nodes



P

Byzantine Agreement

* Can we build systems that tolerate Byzantine failures
and asynchrony? YES!

* Use replication + Byzantine agreement protocol to
order requests

* Cost
e At least 3t+1 replicas (5t+1 for some protocols)

e Communication overhead
e Safety in the face of Byzantine faults and asynchrony
¢ Liveness in periods of synchrony



P

PBFT

* Castro and Liskov. “Practical Byzantine Fault
Tolerance.” OSDIg9.

* The first replication algorithm that integrates
Byzantine agreement

* Demonstrates that Byzantine Fault-Tolerance is not
prohibitively expensive
* Sparked off a thread of research that led to the

development of many Byzantine fault-tolerant
algorithms and systems



P

PBFT: Overview

* Servers are replicated on 3t+1 nodes

® One particular server is called the primary. Also called
the leader or the coordinator

* A continuous period of time during which a server
stays as the primary is called a view, or a configuration



P ————

BFT: Normal Operation

* Fixed primary within a view

* Client submits request to primary

* Primary orders requests and sends them to all nodes

¢ Client waits for identical replies from at least t+1 nodes

= : m replicas

view




Client

* Waits for t+1 identical replies
* Why is this sufficient?

e At most t failures. So at least one of the (t+1) replies
must be from a correct node.

e PBFT ensures that non-faulty nodes never go into a bad
state, so their responses are always valid.

e Difficult: How to ensure this is the case?

* If client times out before receiving sufficient replies,
broadcast request to all replicas



replica 1

replica 2

replica 3 *

Replicas accept pre-prepare if:
*in view v

» never accepted pre-prepare for v,n with different request

-
—



ase 2: Prepare

(PREPARE,v,n,D(m),1H,

prepare

P Se

replica 2 g
‘\/\/\// I/l

replica 3 §vfflv"<

collect pre-prepare and 2f match\i:’hg prepares
by ot

T e
P-certificate(m,v,n)



Phase 2: Prepare

* Each replica collects 2f prepare msgs:

 2f msgs means that 2f+1 replicas saw the same pre-prepare
msg. At least f+1 of these must be honest

» Since there are only 3f+1 replicas, this means that there cannot
exist more than 2f replicas that received a conflicting pre-
prepare msg or claim to have received one

o All correct replicas that receive 2f prepare msgs for a <v, n, m>
tuple received consistent msgs



[JCOMMIT,v,n,D(M),2(d> replies

commit

replica 0'

replica 1

replica 2

replica 3 ix

all collect 2f+1 matching commits,
N

Request m executed after: C-Certificate(m ,V,n)

* having C-certificate(m,v,n)
» executing requests with sequence number less than n




Phase 3: Commit

* If a correct replica p receives 2f+1 matching commit
msgs
e At least f+1 correct replicas sent matching msgs

e No correct replica can receive 2f+1 matching commit
msgs that contradict with the ones that p saw

* In addition, phase 2 ensures that correct replicas send
the same commit msgs, so, together with the view
change protocol, correct replicas will eventually
commit



P ———

Why does this work?

* When a replica has collected sufticient prepared msgs,
it knows that sufficient msgs cannot be collected for
any other request with that sequence number, in that
view

* When a replica collects sufficient commit msgs, it
knows that eventually at least f+1 non-faulty replicas
will also do the same

* Formal proof of correctness is somewhat involved.
Refer to paper. Drop by my office (320 Upson) if you
need help.



P

View Change

* What if the primary fails? View change!
* Provides liveness when the primary fails
* New primary = view number mod N

* Triggered by timeouts. Recall that the client
broadcasts the request to all replicas if it doesn'’t
receive sufficient consistent requests after some
amount of time. This triggers a timer in the replicas.



P ———

View Change

* A node starts a timer if it receives a request that it has
not executed. If the timer expires, it starts a view
change protocol.

* Each node that hits the timeout broadcasts a VIEW-
CHANGE msg, containing certificates for the current
state

* New primary collects 2f+1 VIEWCHANGE msgs,
computes the current state of the system, and sends a
NEWVIEW msg

* Replicas check the NEWVIEW msg and move into the
new view



P ———

PBFT Guarantees

* Safety: all non-faulty replicas agree on sequence
numbers of requests, as long as there are <=t
Byzantine failures

* Liveness: PBFT is dependent on view changes to
provide liveness. However, in the presence of
asynchrony, the system may be in a state of perpetual
view change. In order to make progress, the system
must be synchronous enough that some requests are
executed before a view change.



P

Performance Penalty

* Relative to an unreplicated

system, PBFT incurs 3

rounds of communication (pre-prepare, prepare,

commit)

* Relative to a system that tol

PBFT requires 3t+1 rather t!

erates only crash faults,
han 2t+1 replicas

* Whether these costs are tol
application specific

erable are highly



P

Beyond PBFT

* Fast Byzantine Paxos (Martin and Alvisi)
e Reduce 3 phase commit down to 2 phases

e Remove use of digital signatures in the common case

* Quorum-based algorithms. E.g. Q/U (Abu-El-Malek et
al)
e Require 5t+1 replicas

e Does not use agreement protocols. Weaker guarantees.
Better performance when contention is low.



P

Zyzzyva (Kotla et al)

» Use speculation to reduce cost of Byzantine fault
tolerance

* Idea: leverage clients to avoid explicit agreement
e Sufficient: Client knows that the system is consistent

e Not required: Replicas know that they are consistent

* How: clients commits output only if they know that
the system is consistent



/yzzyva

* 3t+1replicas

* As in PBFT, execution is organized as a sequence of
views

* In each view, one replica is designated as the primary

* Client sends request to the primary, the primary
forwards the request to replicas, and the replicas
execute the request and send responses back to clients



/yzzyva

* If client receives 3t+1 consistent replies, it'’s done

e If client receives between 2t+1 and 3t consistent
replies, the client gathers 2t+1 responses and
distributes a “commit certificate” to the replicas. When
2t+1 replicas acknowledge receipt of the certificate, the
client is done.




/yzzyva. Caveats

* Correct replicas can have divergent state. Must have a
way to reconcile differences.

* View change protocol significantly more complicated,
since replicas may not be aware of a committed

request (only a client knew, by receiving 3t+1 identical
replies)

* Performance is timeout sensitive. How long do clients
wait to see if they’ll receive 3t+1 identical replies?



P ———

Beyond Zyzzyva

* In the good case, Zyzzyva takes 3 network latencies to
complete (Client->Primary—-> Replicas> Client). Is is
possible to eliminate yet another round of
communication to make Byzantine Fault Tolerance
perform as well as an unreplicated system?

* Yes! If clients broadcast requests directly to all replicas,
leaderless protocols are available that can allow
requests to complete in 2 network latencies

(Client—>Replicas—>Client).



Bosco: Byzantine One-Step Consensus

* In the absence of contention, Byzantine
agreement is possible in one communication
step

* Strong one-step Byzantine agreement:

e One-step performance even in the presence of
failures

e 7t+1 replicas
* Weak one-step Byzantine agreement:

e One-step performance only in the absence of
failures and contention

e 5t+1replicas



ractical Concerns

* State machine replication is a popular approach to
provide fault tolerance in real systems

e Chubby (Google) and Zookeeper (Yahoo) are toolkits
that are essentially built on top of agreement protocols

* But Byzantine fault tolerant systems are not as
common - why?

e Application specific checks can be used to mask/detech
non-crash faults.

e Performance overhead significant
« More machines

« More network overhead



s

Practical Concerns

* As machines/bandwidth become cheaper, and
downtime become more intolerable - will this change?

* Can BFT help make applications easier to write?

* Can a combination of BFT, code obfuscation, and other
techniques make systems more secure?



P———

References

[1] Miguel Castro and Barbara Liskov. Practical Byzantine Fault
Tolerance. OSDI 1999.

|2] Michael Abd-El-Malek, Gregory R. Granger, Garth R. Goodson,
Michael K. Reiter, Jay J. Wylie. Fault-Scalable Byzantine Fault-
Tolerant Services. SOSP 2005.

[3] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, Edmund Wong. Zyzzyva: Speculative Byzantine Fault
Tolerance. SOSP 2007.

|4] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine
Consensus. IEEE TODSC 2006.

[5] Yee Jiun Song and Robbert van Renesse. Bosco: One-Step
Byzantine Asynchronous Consensus. DISC 2008.



Happy Thanksgiving!




