Failure Detection: Worth it?
Masking vs Concealing Faults

Ken Birman

Cornell University. CS5410 Fall 2008.




Failure detection... vs Masking

¢ Failure detection: in some sense, “weakest”
e Assumes that failures are rare and localized

e Develops a mechanism to detect faults with low rates of false
positives (mistakenly calling a healthy node “faulty”)

e Challenge is to make a sensible “profile” of a faulty node

* Failure masking: “strong”

e Idea here is to use a group of processes in such a way that as long as

the number of faults is below some threshold, progress can still be
made

e Self stabilization: “strongest”.

 Masks failures and repairs itself even after arbitrary faults



P———

First must decide what you mean by failure

* A system can fail in many ways

 Crash (or halting) failure: silent, instant, clean f
/]

e Sick: node is somehow damaged
e Compromise: hacker takes over with malicious intent
e

=y

e

e But that isn’t all....




Also need to know what needs to work!

Connectivity
issues

Wil live e s i
objects work

Amon
firewall, NAT
O

y '. ~ Firewall/NAT

ow link....

Amazon.com

Can I connect? Will IPMC work here or do I need an overlay? Is my
performance adequate (throughput, RTT, jitter)? Loss rate tolerable?



P ———

Missing data

* Today, distributed systems need to run in very
challenging and unpredictable environments

* We don'’t have a standard way to specity the required
performance and “quality of service” expectations

* So, each application needs to test the environment in
its own, specialized way

e Especially annoying in systems that have multiple setup
options and perhaps could work around an issue

e For example, multicast: could be via IPMC or via overlay



P ———

Needed?

* Application comes with a “quality of service contract”

* Presents it to some sort of management service
e That service studies the contract
e Maps out the state of the network
e Concludes: yes, I can implement this
» Configures the application(s) appropriately

* Later: watches and if conditions evolve, reconfigures
the application nodes

* See: Rick Schantz: QuO (Quality of Service for
Objects) for more details on how this could work



P

Example

* Live objects within a corporate LAN

e End points need multicast... discover that IPMC is
working and cheapest option

* Now someone joins from outside firewall

e System adapts: uses an overlay that runs IPMC within
the LAN but tunnels via TCP to the remote node

* Adds a new corporate LAN site that disallows IPMC

e System adapts again: needs an overlay now...



Example

(4
\

®.!

=
T

TCP tunnels create 3
WAN overlay

IPMC works here

N\ \\(\Z

=
T

2

Must use UDP here



P————

Failure is a state transition

* Something that was working no longer works

e For example, someone joins a group but IPMC can’t
reach this new member, so he’ll experience 100% loss

* If we think of a working application as having a
contract with the system (an implicit one), the
contract was “violated” by a change of system state

 All of this is very ad-hoc today

e Mostly we only use timeouts to sense faults



Hidden assumptions

* Failure detectors reflect many kinds of assumptions

e Healthy behavior assumed to have a simple profile
« For example, all RPC requests trigger a reply within Xms
e Typically, minimal “suspicion”
» If a node sees what seems to be faulty behavior, it reports the
problem and others trust it

 Implicitly: the odds that the report is from a node that was
itself faulty are assumed to be very low. If it look like a fault to
anyone, then it probably was a fault...

 For example (and most commonly): timeouts



P

Timeouts: Pros and Cons

Pros

* Easy to implement
* Already used in TCP

* Many kinds of problems
manifest as severe
slowdowns (memory
leaks, faulty devices...)

* Real failures will usually
render a service “silent”

Cons
¢ Easily fooled

* Vogels: If your neighbor
doesn't collect the mail
at 1ipm like she usually
does, would you assume

that she has died?

* Vogels: Anyhow, what if
a service hangs but low-
level pings still work?



P———

A “Vogels scenario” (one of many)

* Network outage causes client to believe server has
crashed and server to believe client is down

* Now imagine this happening to thousands of nodes all
at once... triggering chaos



P ———

Vogels argues for sophistication

* Has been burned by situations in which network
problems trigger massive flood of “failure detections”

* Suggests that we should make more use of indirect
information such as
e Health of the routers and network infrastructure

o If the remote O/S is still alive, can check its
management information base

e Could also require a “vote” within some group that all
talk to the same service - if a majority agree that the
service is faulty, odds that it is faulty are way higher



P————

Other side of the picture

* Implicit in Vogels’ perspective is view that failure is a
real thing, an “event”

e Suppose my application is healthy but my machine
starts to thrash because of some other problem

e Is my application “alive” or “faulty”?

* In a data center, normally, failure is a cheap thing to

handle.

* Perspective suggests that Vogels is
e Right in his worries about the data center-wide scenario

e But too conservative in normal case



P———

Other side of the picture

* Imagine a buggy network application

e Its low-level windowed acknowledgement layer is
working well, and low level communication is fine

e But at the higher level, some thread took a lock but now
is wedged and will never resume progress

* That application may respond to “are you ok?” with
“yes, I'm absolutely fine”.... Yet is actually dead!
e Suggests that applications should be more self-checking

e But this makes them more complex... self-checking code
could be buggy too! (Indeed, certainly is)



P

Recall lessons from eBay, MSFT

* Design with weak consistency models as much as
possible. Just restart things that fail

* Don't keep persistent state in these expendable nodes,
use the file system or a database

e And invest heavily in file system, database reliability

e Focuses our attention on a specific robustness case...

¢ If in doubt... restarting a server is cheap!



P————

Recall lessons from eBay, MSFT

mm. [ 9 _—
think the el
server is

down

e Cases to think about
e One node thinks three others are down
e Three nodes think one server is down

e Lots of nodes think lots of nodes are down



——,

Recall lessons from eBay, MSFT

* If a healthy node is “suspected”, watch more closely
* If a watched node seems faulty, reboot it

e If it still misbehaves, reimage it

e If it still has problems, replace the whole node

Healthy Watched Reboot Reimage Replace




P———

Assumptions?

* For these cloud platforms, restarting is cheap!

e When state is unimportant, relaunching a node is a very
sensible way to fix a problem

e File system or database will clean up partial actions
because we use a transactional interface to talk to it

e And if we restart the service somewhere else, the
network still lets us get to those files or DB records!

* In these systems, we just want to avoid thrashing by
somehow triggering a globally chaotic condition with
everyone suspecting everyone else



Rule of thumb

* Suppose all nodes have a “center-wide status” light
e Green: all systems go
e Yellow: signs of possible disruptive problem
e Red: data center is in trouble

* In green mode, could be quick to classify nodes as
faulty and quick to restart them

e Marginal cost should be low

* As mode shifts towards red... become more
conservative to reduce risk of a wave of fault detections



Thought question

* How would one design a data-center wide traffic light?
e Seems like a nice match for gossip
e Could have every machine maintain local “status”

« Then use gossip to aggregate into global status

 Challenge: how to combine values without tracking precisely
who contributed to the overall result

- One option: use a “slicing” algorithm
 But solutions to exist... and with them our light should be
quite robust and responsive

e Assumes a benign environment



V)\J

-

= ' \
Slicing ﬁf\

7

* Gossip protocol explored by Gramoli,
Vigtussen, Kermarrec, Cornell group

* Basic idea is related to sorting

e With sorting, we create a rank order and each node
learns who is to its left and its right, or even its index

e With slicing, we rank by attributes into k slices for some
value of k and each node learns its own slice number

* For small or constant k can be done in time Q(log n)
e And can be continuously tracked as conditions evolve



Slicing protocol Wow, my

value is
* Gossip protocol in which, on each round ) DG

e Node selects a random peer (uses random walks)

e Samples that peer’s attribute values

Attribute values

e Over time, node can estimate where it sits on an ordered
list of attribute values with increasing accuracy

* Usually we want k=2 or 3 (small, constant values)

e Nodes close to boundary tend to need longer to estimate
their slice number accurately



/
Slicing protocol: Experiment

Comparison experiment

* Two protocols
e Sliver

e Ranking: an earlier one

* Major difference: Sliver is
careful not to include values
from any single node twice

* Also has some minor changes

* Sliver converges quickly...
Ranking needs much longer

Paosifion estimate

08

086

0.4

0.2

—
e
—————————— pl -
e
o T
----------------------------------------
A v T — e
, i S
" [ ——
) A S - e N SOV
1 B g T e s T —
: T e £
{ T g At ™
I P T i
7 E I e e e e =
i R A ot o e
. g VT e S e
I Ty ST
p ok #
_'\ B T _TITT s - Y
e ey, Lt W SR ~——
. e T
b
-J‘W
3 g TP
A eV
N
. R
i R S e o N
fil =
b —==L
e
e——r

1
200 400 600 8OO 1000 1200 1400 1800
Time in seconds

Sliver: dashed lines
Ranking: solid



P———

5
Slicing ﬁ:\
Z

* So, hypothetically, a service could

e Use a local scheme to have each node form a health
estimate for itself and the services it uses

e Slice on color with, say, k=3, then aggregate to compute
statistics. Ideally, no yellows or reds in upper 2 slices...

* Aggregation is easy in this case: yes/no per-color

* Asyellows pervade system and red creeps to more
nodes, we quickly notice it system-wide (log n delay)



P ———

Caution about feedback

* Appealing to use system state to tune the detector
thresholds used locally

e If I think the overall system is healthy, I use a fine-
grained timeout

e If the overall system enters yellow mode, I switch to a
longer timeout, etc

* But this could easily oscillate... important to include a
damping mechanism in any solution!
e Eg switching back and forth endlessly would be bad
e But if we always stay in a state for at least a minute...



P

Reputation

* Monday we discussed reputation monitoring
e Nodes keep records documenting state (logs)

e Audit of these logs can produce proofs prove that peers
are misbehaving

e Passing information around lets us react by shunning
nodes that end up with a bad reputation

* Reputation is a form of failure detection!

* Yet it only covers “operational” state: things p actually
did relative to g



P ———

Reputation has limits

* Suppose q asserts that “p didn't send me a message at
time t, so I believe p is down”

e P could produce a log “showing” that it sent a message

e But that log only tells us what the application thinks it
did (and could also be faked)

* Unless p broadcasts messages to a group of witnesses
we have no way to know if p or q is truthful

e In most settings, broadcasts are too much overhead to
be willing to incur... but not always



P————

Leading to “masking”

* Systems that mask failures
e Assume that faults happen, may even be common

e Idea is to pay more all the time to ride out failures with
no change in performance

* Could be done by monitoring components and quickly
restarting them after a crash...

¢ ...or could mean that we form a group, replicate
actions and state, and can tolerate failures of some of
the group members



P————

Broad schools of thought

* Quorum approaches
e Group itself is statically defined

« Nodes don'’t join and leave dynamically

« But some members may be down at any particular moment
e Operations must touch a majority of members
* Membership-based approaches
e Membership actively managed

e Operational subset of the nodes collaborate to perform
actions with high availability

e Nodes that fail are dropped and must later rejoin



P————

Down the Quorum road

* Quorum world is a world of
e Static group membership
e Write and Read quorums that must overlap
» For fault-tolerance, Q, < n hence Q,> 1

e Advantage: progress even during faults and no need to
worry about “detecting” the failures, provided quorum is
available.

e Cost: even a read is slow. Moreover, writes need a 2-
phase commit at the end, since when you do the write
you don'’t yet know if you'll reach a quorum of replicas



P

Down the Quorum road

* Byzantine Agreement is basically a form of quorum
fault-tolerance

e In these schemes, we assume that nodes can crash but
can also behave maliciously

e But we also assume a bound on the number of failures

e Goal: server as a group must be able to overcome faulty
behavior by bounded numbers of its members

* We'll look at modern Byzantine protocols on Nov 24



Micro-reboot

* Byzantine thinking

e Attacker managed to break into server i

e Now he knows how to get in and will perhaps manage to
compromise more servers

* So... reboot servers at some rate, even if nothing seems
to be wrong

e With luck, we repair server i before server j cracks

e Called “proactive micro-reboots” (Armondo Fox, Miguel
Castro, Fred Schneider, others)



P————

Obfuscation

* Idea here is that if we have a population of nodes
running some software, we don’'t want them to share
identical vulnerabilities

* So from the single origin software, why not generate a
collection of synthetically diversified versions?
e Stack randomization
e Code permutation
e Deliberately different scheduling orders
e Renumbered system calls
e ...and the list goes on



P ———

An extreme example

* French company (GEC-Alstrom) doing train brakes for
TGV was worried about correctness of the code

e So they used cutting-edge automated proof technology
(the so-called B-method)

e But this code must run on a platform they don't trust

® Their idea?
e Take the original code and generate a family of variants
e Run the modified program (a set of programs)

e Then external client compares outputs

» “I tell you three times: It is safe to not apply the brakes!”



P ———

An extreme example

* Separation of service from client becomes a focus
e Client must check the now-redundant answer

e Must also make sure parts travel down independent
pathways, if you worry about malicious behavior

* Forces thought about the underlying fault model
e Could be that static messed up memory

e Or at other extreme, agents working for a terrorist
organization modified the processor to run the code
incorrectly

e GEC-Alstrom never really pinned this down to my taste



P———

Byzantine model: pros and cons

* On the positive side, increasingly practical

e Computers have become cheap, fast... cost of using 4
machines to simulate one very robust system tolerable

e Also benefit from wide availability of PKIs: Byzantine
protocols are much cheaper if we have signatures

e If the service manages the crown jewels, much to be said
for making that service very robust!

* Recent research has shown that Byzantine services can
compete reasonably well with other forms of fault-
tolerance (but obviously BFT is still more expensive)



Byzantine model: pros and cons

* On the negative side:

e The model is quite “synchronous” even if it runs fast, the
end-to-end latencies before actions occur can be high

e The fast numbers are for throughput, not delay

e Unable to tolerate malfunctioning client systems: is this
a sensible line to draw in the sand?

 You pay a fortune to harden your file server...
 But then allow a compromised client to trash the contents!



NSA perspective

* There are many ways to attack a modern computer

* Think of a town that has very relaxed security

AH doors unlocked

2 Back door open

H I Wmdow open

Pass key works in front
door lock

* Now think of Linux,
Windows, and the apps that run on them...



NSA perspective

* Want to compromise a computer?

e Today, simple configuration mistakes will often get you
in the door
» Computer may lack patches for well known exploits
« May use “factory settings” for things like admin passwords
» Could have inappropriate trust settings within enclave

e But suppose someone fixes those. This is like locking
the front door.
« What about the back door? The windows? The second floor?

« In the limit, a chainsaw will go right through the wall



P———

NSA perspective

* Can attack
e Configuration
e Known OS vunerabilities
e Known application vulnerabilities

e Perhaps even hardware weaknesses, such as firmware
that can be remotely reprogrammed

* Viewed this way, not many computers are secure!

* BFT in a service might not make a huge difference



Mapping to our computer system

® Choice is between a “robust” fault model and a less
paranoid one, like crash failures

e Clearly MSFT was advocating a weaker model
* Suppose we go the paranoia route
e If attacker can’t compromise data by attacking a server...
.. he'll just attack the host operatmg system
. or the client applications Tanar s
. Where can we draw the line?
All bets off on top
BFT below [




* Model favored by military (multi-level security)

e Imagine our system as a set of concentric rings

e Data “only flows in” and inner ones have secrets outer
ones can'’t access. (But if data can flow in... perhaps
viruses can too... so this is a touchy point)

* Current approach
e External Internet, with ~25 gateways
e Military network for “most” stuff

 Special network for sensitive work is physically
disconnected from the outside world



P

The issue isn’t just computers

* Today the network itself is an active entity
e Few web pages have any kind of signature
e And many platforms scan or even modify inflight pages!

e Goal is mostly to insert advertising links, but
implications can be far more worrying

* Longer term perspective?
e A world of Javascript and documents that move around
e Unclear what security model to use in such settings!



Javascript/AJAX

* Creates a whole new kind of distributed “platform”

e Unclear what it means when something fails in such
environments

e Similar issue seen in P2P applications
» Nodes p and q download the same thing
 But will it behave the same way?

e Little is understood about the new world this creates
* And yet we need to know

e In many critical infrastructure settings, web browsers
and webmail interfaces will be ubiquitous!



P———

Vision for the future

* Applications (somehow) represent their needs
* “I need a multicast solution to connect with my peers”

e “...and it needs to carry 100kb/s with maximum RTT 25ms
and jitter no more than 3ms.”

* Some sort of configuration manager tool maps out the
options and makes a sensible selection (or perhaps

constructs a solution by snapping together some parts,
like a WAN tunnel and a local IPMC layer)

* Then monitors status and if something changes, adapts
(perhaps telling application to reconfigure)



Vision for future

* Forces us to think in terms of a “dialog” between the
application and its environment

e For example, a multicast streaming system might adjust
the frame rate to accommodate the properties of an
overlay, so that it won't overrun the network

* And yet we also need to remember all those “cloud
computing lessons learned”

e Consistency: “as weak as possible”
e Loosely coupled... locally autonomous.... etc



P ———

Summary

* Fault tolerance presents us with a challenge
e Can faults be detected?
e Or should we try and mask them?
* Masking has some appeal, but the bottom line is that
it seems both expensive and somewhat arbitrary
e A capricious choice to draw that line in the sand...
e And if the faults aren’t well behaved, all bets are off
* Alternatives reflect many assumptions and

understanding them is key to using solutions in
sensible ways....



