Sybil Attacks and
Reputation Tracking

Ken Birman

Cornell University. CS5410 Fall 2008.

P————

Background for today

* Consider a system like Astrolabe. Node p announces:

e 've computed the aggregates for the set of leaf nodes to
which I belong

e It turns out that under the rules, I'm one regional contact
to use, and my friend node q is the second contact

e Nobody in our region has seen any signs of intrusion
attempts.

* Should we trust any of this?

 Similar issues arise in many kinds of P2P and gossip-
based systems

P ———

What could go wrong?

* Nodes p and q could be compromised

e Perhaps they are lying about values other leaf nodes
reported to them...

e ...and they could also have miscomputed the aggregates

e ...and they could have deliberately ignored values that
they were sent, but felt were “inconvenient” (“oops, I

thought that r had failed...”)

e Indeed, could assemble a “fake” snapshot of the region
using a mixture of old and new values, and then
computed a completely correct aggregate using this
distorted and inaccurate raw data

P ———

Astrolabe can’t tell

¢ ... Even if we wanted to check, we have no easy way to
fix Astrolabe to tolerate such attacks

e We could assume a public key infrastructure and have
nodes sign values, but doing so only secures raw data

e Doesn't address the issue of who is up, who is down, or
whether p was using correct, current data

e And even if p says “the mean was 6.7” and signs this,
how can we know if the computation was correct?

* Points to a basic security weakness in P2P settings

Today’s topic

* We are given a system that uses a P2P or gossip
protocol and does something important. Ask:
Is there a way to strengthen it so that it will
tolerate attackers (and tolerate faults, too)?

e Ideally, we want our solution to also be a symmetric, P2P
or gossip solution
e We certainly don’t want it to cost a fortune

» For example, in Astrolabe, one could imagine sending raw
data instead of aggregates: yes, this would work... but it would
be far too costly and in fact would “break the gossip model”

e And it needs to scale well

/
... leading to

Concept of a Sybil attack

Broadly:
e Attacker has finite resources

e Uses a technical trick to amplify them into a huge
(virtual) army of zombies

e These join the P2P system and then subvert it

‘ Who was Sybil?

* Actual woman with a
psychiatric problem

e Termed “multiple
personality disorder”

e Unclear how real this is

* Sybil Attack: using small
number of machines to
mimic much larger set

P———

Relevance to us?

* Early IPTPS paper suggested that P2P and gossip
systems are particularly fragile in face of Sybil attacks

e Researchers found that if one machine mimics many
(successfully), the attackers can isolate healthy ones

e Particularly serious if a machine has a way to pick its
own hashed ID (as occurs in systems where one node
inserts itself multiple times into a DHT)

* Having isolated healthy nodes, can create a “virtual”
environment in which we manipulate outcome of
queries and other actions

P

Real world scenarios

* Recording Industry of America (RIA) rumored to have
used Sybil attacks to disrupt illegal file sharing

* So-called “Internet Honeypots” lure virus,
worms, other malware (like insects to a
pot of honey)

* Organizations like the NSA might use Sybil approach
to evade onion-routing and other information hiding
methods

P————

Elements of a Sybil attack

* In a traditional attack, the intruder takes over some
machines, perhaps by gaining root privilages
e Once on board, intruder can access files and other data
managed by the P2P system, maybe even modify them
e Hence the node runs correct protocol but is controlled
by the attacker

* In a Sybil attack, the intruder has similar goals, but
seeks a numerical advantage.

e

Once search reaches a
compromised node
attacker can “hijack” it

P

Challenge is numerical...

* In most P2P settings, there are LOTS of healthy clients

* Attack won't work unless the attacker has a huge
number of machines at his disposal

e Even a rich attacker is unlikely to have so much money

e Solution?

e Attacker amplies his finite number of attack nodes by
clever use of a kind of VMM

P ———

VMM technology

¢ Virtual machine technology dates to IBM in 1970’s

e Idea then was to host a clone of an outmoded machine
or operating system on a more modern one

e Very popular... reduced costs of migration

* Died back but then resurfaced during the OS wars
between Unix-variants (Linux, FreeBSD, Mac-0OS...)
and the Windows platforms

e Goal was to make Linux the obvious choice

e Want Windows? Just run it in a VMM partition

Example: IBM VM/370

virtual
hardware

> gt gy —

ﬁser processe\§,
MVS :
_ |
Virtual |
System/370
uSer processes [user processes |Juser processes|user processes
I
DOS/VS MVS N MirtualCP || CMS CMS
N e
Virtual Virtual Virtual Virtual Virtual
System/370 | System/370 | System/370 | System/370 | System/370
CP
real hardware System/370

Adapted from Dietel, pp. 606—607

P

VMM technology took off

* Today VMWare is a huge company

e Ironically, the actual VMM in widest use is Xen, from
XenSource in Cambridge

e Uses paravirtualization

* Main application areas?
e Some “Windows on Linux”
e But migration of VMM images has been very popular

 Leads big corporations to think of thin clients that talk
to VMs hosted on cloud computing platforms

e Term is “consolidation”

Paravirtualization vs. Full Virtualization

User Applications

VMM

Guest OS

Binary
Translation

Full Virtualization

Ring 3

Ring 2

Ring 1

Ring O

|
Control L User
Plane Apps
Guest OS
I |
1 DomO
Xen

Paravirtualization

VMMs and Sybil

¢ If one machine can host multiple VM images... then we
have an ideal technology for Sybil attacks

e Use one powerful machine, or a rack of them

e Amplify them to look like thousands or hundreds of
thousands of machines

e Each of those machines offers to join, say, eMule

 Similar for honeypots

e Our system tries to look like thousands of tempting, not
very protected Internet nodes

P ———

Research issues

¢ If we plan to run huge numbers of instances of some
OS on our VM, there will be a great deal of replication
of pages
e All are running identical code, configurations (or nearly
identical)

* Hence want VMM to have a smart memory manager
that has just one copy of any given page
e Research on this hasyielded some reasonable solutions

e Copy-on-write quite successful as a quick hack and by
itself gives a dramatic level of scalability

P ———

Other kinds of challenges

® One issue relates to IP addresses

e Traditionally, most organizations have just one or two
primary [P domain addresses

e For example, Cornell has two “homes” that function as
NAT boxes. All our machines have the same IP prefix

* This is an issue for the Sybil attacker
e Systems like eMule have black lists

e If they realize that one machine is compromised, it
would be trivial to exclude others with the same prefix

e But there may be a solution....

P

Attacker is the “good guy”

* In our examples, the attacker is doing something legal
* And has a lot of money

* Hence helping him is a legitimate line of business for
ISPs

* So ISPs might offer the attacker a way to purchase lots
and lots of seemingly random IP addresses

e They just tunnel the traffic to the attack site

P ———

Implications?

* Without “too much” expense, attacker is able to
e Create a potentially huge number of attack points

e Situate them all over the network (with a little help from
AT&T or Verizon or some other widely diversified ISP)

e Run whatever he would like on the nodes rather
efficiently, gaining a 50x or even 100’sx scale-up factor!

* And this really works...
e See, for example, the Honeypot work at UCSD
e U. Michigan (Brian Ford, Peter Chen) another example

Defending against Sybil attacks

1. Often system maintains a black list
e If nodes misbehave, add to black list
e Need a robust way to share it around
e Then can exclude the faulty nodes from the application
e Issues? Attacker may try to hijack the black list itself
« So black list is usually maintained by central service
2. Check joining nodes
1. Make someone solve a puzzle (proof of human user)

>. Perhaps require a voucher “from a friend”

5. Finally, some systems continuously track “reputation”

Reputation

® Basic idea:

e Nodes track behavior of other nodes
e Goal isto

« Detect misbehavior
 Be in a position to prove that it happened

e Two versions of reputation tracking

» Some systems assume that the healthy nodes outnumber the
misbehaving ones (by a large margin)
- In these, a majority can agree to shun a minority

o Other systems want proof of misbehavior

Proof?

* Suppose that we model a system as a time-space
diagram, with processes, events, messages

P

Options

* Node A to all:

e Node B said “X” and I can prove it
e Node B said “X” in state S and I can prove it

e Node B said “X” when it was in state S after I reached
state S’ and before I reached state S”

* First two are definitely achievable. Last one is trickier
and comes down to cost we will pay

* Collusion attacks are also tricky

P———

Collusion

® Occurs when the attack compromises multiple nodes

* With collusion they can talk over their joint story and
invent a plausible and mutually consistent one

* They can also share their private keys, gang up on a
defenseless honest node, etc

P

An irrefutable log

* Look at an event sequence: e, e, e,

* Suppose that we keep a log of these events -

¢ If I'm shown a log, should I trust it?
e Are the events legitimate?
e We can assume public-key cryptography (“PKI”)

e Have the process that performed
each event sign for it

le,],

P———

Use of a log?

* It lets a node prove that it was able to reach state S

* Once an honest third party has a copy of the node, the
creator can’t back out of the state it claimed to reach

* But until a third party looks at the log, logs are local
and a dishonest node could have more than one...

P———

An irrefutable log

* But can I trust the sequence of events?

e Each record can include a hash of the
prior record

[MD5s(e,): €,],

* Doesn’t prevent a malicious process from maintaining
multiple versions of the local log (“cooked books”)

* But any given log has a robust record sequence now

P

An irrefutable log

* What if p talks to q?
e p tells q the hash of its last log entry (and signs for it)
e qappends to log and sends log record back to p

P S0 ! / >

[le; I [[e1], - m]p]
[[el]p:m]p 2 g %1 lp - Hlp Iq

- ,

Generates e, as incoming msg. New log record
Is [[e;]q [[e], : m], I

[MDs, (e,): e,],

——,

What does this let us prove?

* Node p can prove now that
e When it was in state S
e [t sent message M to q
e And node q received M in state S’

* Obviously, until p has that receipt in hand, though, it
can’'t know (much less prove) that M was received

P

An irrefutable log

* q has freedom to decide when to receive the message
from p... but once it accepts the message is compelled
to add to its log and send proof back to p

* p can decide when to receive the proof, but then must
log it

* Rule: must always log the outcome of the previous
exchange before starting the next one

P

Logs can be audited
* Any third party can

e Confirm that p’s log is a well-formed log for p

e Compare two logs and, if any disagreement is present,
can see who lied

* Thus, given a system, we can (in general) create a
consistent snapshot, examine the whole set of logs,
and identify all the misbehaving nodes within the set

* Idea used in NightWatch (Haridisan, Van Renesse 07)

P

Costs?

* Runtime overhead is tolerable
 Basically, must send extra signed hashes
e These objects are probably 128 bits long

* Computing them is slow, however
e Not extreme, but encrypting an MDs5 hash isn’t cheap

* Auditing a set of logs could be very costly
e Study them to see if they embody a contradiction
e Could even check that computation was done correctly

P ———

Methods of reducing costs

® One idea: don't audit in real-time
e Run auditor as a background activity

 Periodically, it collects some logs, verifies them
individually, and verifies the cross-linked records too

* Might only check “now and then”

* For fairness: have everyone do some auditing work

* If a problem is discovered, broadcast the bad news
with a proof (use gossip: very robust). Everyone
checks the proof, then shuns the evil-doer

Limits of auditability

* Underlying assumption?

e Event information captures everything needed to verify
the log contents

* But is this assumption valid?

e What if event says “process p detected a failure of
process q
« Could be an excuse used by p for ignoring a message!

e And we also saw that our message exchange protocol
still left p and q some wiggle room (“it showed up late...”)

Apparent need?

* Synchronous network

* Accurate failure detection
¢ In effect: auditing is as hard as solving consensus

* But if so, FLP tells us that we can never guarantee that
auditing will successfully reveal truth

P

How systems deal with this?

* Many don'’t: Most P2P systems can be disabled by Sybil
attacks

* Some use human-in-the-loop solutions
e Must prove human is using the system
e And perhaps central control decides who to allow in

* Auditing is useful, but no panacea

P ———

Other similar scenarios
e Think of Astrolabe

e If “bad data” is relayed, can contaminate the whole
system (Amazon had such an issue in August 08)

* Seems like we could address this for leat data with
signature scheme... but what about aggregates

e If node A tells B that “In region R, least loaded machine
at time 10:21.376 was node C with load 5.1"

e Was A using valid inputs? And was this correct at that
specific time?

e An evil-doer could delay data or detect failures to
manipulate the values of aggregates!

P

Auditable time?

* Only way out of temporal issue is to move towards a
state machine execution

» Every event...
e ... eventually visible to every healthy node
e ...in identical order

e ...even if nodes fail during protocol, or act maliciously

* With this model, a faulty node is still forced to accept
events in the agreed upon order

P

Summary?

* Sybil attacks: remarkably hard to stop
e With small numbers of nodes: feasible
e With large numbers: becomes very hard

* Range of options
e Simple schemes like blacklists

 Simple forms of reputation (“Jeff said that if I
mentioned his name, [might be able to join...”)

e Fancy forms of state tracking and audit

