Cooperative Storage
Systems

Ken Birman

Cornell University. CS5410 Fall 2008.




P ———

Cooperative Storage

* Early uses of P2P systems were mostly for downloads
* But idea of cooperating to store documents soon
emerged as an interesting problem in its own right
e For backup

e Asa cooperative way to cache downloaded material from
systems that are sometimes offline or slow to reach

e In the extreme case, for anonymous sharing that can
resist censorship and attack

® Much work in this community... we'll focus on some
representative systems



Storage Management and Caching in PAST

* System Overview

* Routing Substrate

* Security

* Storage Management
* Cache Management



PAST System Overview
» PAST (Rice and Microsoft Research)

 Internet-based, self-organizing, P2P global storage
utility
e Goals
 Strong persistence
- High availability
» Scalability
« Security
e Pastry
« Peer-to-Peer routing scheme



PAST System Overview

* API provided to clients

o fileld = Insert(name, owner-credentials, k, file)
» Stores a file at a user-specified number of k of diverse nodes

« fileld is computed as the secure hash (SHA-1) of the file’s name, the
owner’s public key and a seed

file = Lookup(fileld)
 Reliably retrieves a copy of the file identified by fileld from a “near” node
Reclaim(fileld, owner-credentials)

» Reclaims the storage occupied by the k copies of the file identified by
fileld

fileld — 160 bits identifier among which 128 bits form the most
significant bits (msb)
nodeld - 128-bit node identifier



P

Storage Management Goals

* Goals
e High global storage utilization

e Graceful degradation as the system approaches its
maximal utilization

* Design Goals
e Local coordination
e Fully integrate storage management with file insertion
e Reasonable performance overhead



Routing Substrate: Pastry
* PAST is layered on top of Pastry

e As we saw last week, an efficient peer-to-peer routing
scheme in which each node maintains a routing table

* Terms we'll use from the Pastry literature:
e Leaf Set

o 1/2 numerically closest nodes with larger nodelds
» 1/2 numerically closest nodes with smaller nodelds

e Neighborhood Set

L closest nodes based on network proximity metric
» Not used for routing
« Used during node addition/recovery



Storage Management in PAST

» Responsibilities of the storage management
e Balance the remaining free storage space

e Maintain copies of each file in k nodes with nodelds
closest to the fileld

e Conflict?

* Storage load imbalance

e Reason
« Statistical variation in the assignment of nodelds and filelds
- Size distribution of inserted files varies
« The storage capacity of individual PAST nodes differs

e How to overcome?



Storage Management in PAST

* Solutions for load imbalance

e Per-node storage

« Assume storage capacities of individual nodes differ by no
more than two orders of magnitude

» Newly joining nodes have too large advertised storage capacity
- Split and join under multiple nodelds

» Too small advertised storage capacity
- Reject



Storage Management in PAST

* Solutions for load imbalance

e Replica diversion
e Purpose
- Balance free storage space among the nodes in a leaf set
« When to apply

- Node A, one of the k closest nodes, cannot accommodate a
copy locally

e How?
- Node A chooses a node B in its leaf set such that
- B is not one of the k-closest nodes
- B doesn’t hold a diverted replica of the file



Storage Management in PAST

* Solutions for load imbalance

e Replica diversion
» Policies to avoid performance penalty of unnecessary replica
diversion

- Unnecessary to balance storage space when utilization of all
nodes is low

- Preferable to divert a large file

- Always divert a replica from a node with free space
significantly below average to a node significantly above
average



Storage Management in PAST

* Solutions for load imbalance

e File diversion

e Purpose

- Balance the free storage space among different portions of the
nodeld space in PAST

« Client generates a new fileld using a different seed and retries
for up to three times

o Still cannot insert the file?
- Retry the operations with a smaller file size
- Smaller number of replicas (k)



Caching in PAST

* Caching
e Goal

« Minimize client access latencies
» Maximize the query throughput

» Balance he query load in the system

 Afile has k replicas. Why caching is needed?
« A highly popular file may demand many more than k replicas
» A file is popular among one or more local clusters of clients



Caching in PAST

* Caching Policies

e Insertion policy

« A file routed through a node as part of lookup or insert
operation is inserted into local disk cache

o If current available cache size * c is greater than file size
» cis fraction

e Replacement policy
 GreedyDual-Size (GD-S) policy
» Weight H,associated with a file d, which inversely
proportional to file size d

« When replacement happens, remove file vwhose H, is the
smallest among all cached files



Wide-area cooperative storage with CFS

* System Overview

* Routing Substrate
* Storage Management
* Cache Management



P

CFS System Overview

* CFS (Cooperative File System) is a P2P read-only
storage system

e CFS Architecture|]

client server server client
Internet

node node

* Each node may consist of a client and a server



CFS System Overview

® CFS software structure

FS

\4

DHas

A

A

\4

A 4

DHas

A

\4

A

Chord

CFS Client

A 4

Chord

DHas

A

\4

A

CFS Server

b A

Chord

CFS Server




P

CFS System Overview

* Client-Server Interface []

Insert file Insert block
" FS Client Y server server

Lookup file Lookup block
node node

e Files have unique name

e Uses the DHash layer to retrieve blocks

e Client DHash layer uses the client Chord layer to locate
the servers holding desired blocks



P

CFS System Overview

* Publishers split files into blocks
* Blocks are distributed over many servers
* Clients is responsible for checking files’ authenticity

* DHash is responsible for storing, replicating, caching
and balancing blocks

* Files are read-only in the sense that only publisher can
update them



CFS System Overview
* Why use blocks? []

e Load balance is easy
e Well-suited to serving large, popular files
e Storage cost of large files is spread out
e Popular files are served in parallel
* Disadvantages?
e Cost increases in terms of one lookup per block



Routing Substrate in CFS

® CFS uses the Chord scheme to locate blocks
* Consistent hashing

* Two data structures to facilitate lookups
e Successor list
e Finger table



P

Storage Management in CFS

* Replication
e Replicate each block on k CFS servers to increase
availability
e The k servers are among Chord’s r-entry successor list (r

> k)

e The block’s successor manages replication of the block

e DHash can easily find the identities of these servers
from Chord’s r-entry successor list

e Maintain the k replicas automatically as servers come
and go



Caching in CFS
* Caching

e Purpose
» Avoid overloading servers that hold popular data

e Each DHash layer sets aside a fixed amount of disk
storage for its cache

Disk | Cache Long-term block storage

e Long-term blocks are stored for an agree-upon interval

« Publishers need to refresh periodically



Caching in CFS
* Caching

 Block copies are cached along the lookup path
e DHash replaces cached blocks in LRU order
e LRU makes cached copies close to the successor

e Meanwhile expands and contracts the degree of caching
according to the popularity



P———

Storage Management vs Caching in CFS

* Comparison of replication and caching
e Conceptually similar
e Replicas are stored in predictable places
e DHash can ensure enough replicas always exist
e Blocks are stored for an agreed-upon finite interval

e Number of cached copies are not easily counted
e Cache uses LRU



P

Storage Management in CFS

* Load balance
e Different servers have different storage and network
capacities
e To handle heterogeneity, the notion of virtual server is
introduced
e A real server can act as multiple virtual servers

e Virtual Nodeld is computed as
« SHA-1(IP Address, index)[]



Storage Management in CFS

* L.oad balance

e Number of virtual servers is proportional to the server’s
storage and network capacity

e Disadvantages of using virtual server
« The number of hops during lookup may increase

e How to overcome?

« Allow virtual servers on the same physical server to examine
each others’ routing tables



P

Storage Management in CFS

* Quotas
e Goal

 Avoid malicious injection of large quantities of data
e Per-publisher quotas

e CFS bases quotas on the IP address of the publisher to
avoid centralized authentication

* Updates and Deletion
e Only the publishers are allowed to update CFS



Storage Management in CFS

* Updates and Deletion
e CFS doesn't support explicit delete operation

» Blocks are stored for an agreed-upon finite interval
 Publishers must periodically refresh their blocks

 CFS server may delete blocks that have not been refreshed
recently

e Benefit?

« Automatically recover from malicious insertions



Comparisons of the two systems

* File storage

e PAST stores whole files
e CFS stores blocks

* Load balance
e PAST: Replication Diversion, File Diversion
e CFS: Virtual Server

* Caching
e Both cache copies along lookup path



P ———

But could they thrash?

* Intended behavior assumes this copying is pretty fast
e We fix the edge of the ring... fix up the replicas... done
* Actual behavior: could be so slow that on expectation,

more churn will already have happened before the
copying terminates

e In this case further rounds of copying and rebalancing
need to happen

e Vision: a form of “thrashing”, like when a VM system
gets overloaded because programs have poor hit rates

e Nobody knows if this happens in the wild...



P ———

Censor-Resistant storage

* Work in this area assumes that the documents stored
in a P2P storage system aren't just random stuft

e Why use P2P in the first place?

e Mazieres and his colleagues suspect that it is to ensure
freedom of speech even in climates with censorship

* Their goal?

e A collaborative storage system that maintains document
availability in the presence of adversaries who wish to
suppress the document.

e Also makes it possible to deny that you were the author
of the document



* “Whistleblowing”

* Human Rights Reports



Possible Solutions

e Collection of WWW servers

e CGI scripts to accept files
e each file replicated on other participating servers

e Usenet
e Send file to Usenet server
e Automatically replicated via NNTP

* Tangler
e Usesa P2P overlay to solve the problem



! The Tangler Censorship-Resistant

Publishing System

* Designed to be a practical and implementable censorship-
resistant publishing system.

* Addresses some deficiencies of previous work

* Contributions include -
- A unique publication mechanism called entanglement

- The design of a self-policing storage network that ejects
faulty nodes



Tangler Design

Small group (<100) of volunteer servers

Each server has public/private key pair

Each server donates disk space to system (publishing limit)
Agreement on volunteer servers, public keys and donated disk space
Published documents are divided into equal sized blocks, and
combined with blocks of previously published documents

(entanglement)

Entangled blocks are stored on servers

Each server verifies other servers compliance with Tangler protocols



Tangler Goals

Anonymity - Users can publish and read documents anonymously

Document availability through replication
Integrity guarantees on data (tamper & update)

No server is storing objectionable documents

- Decoupling between document and blocks

- Blocks not permanently tied to specific servers

- Server cannot chose which blocks to store or serve

Misbehaving servers should be ejected from system



Publish Operation

* Document broken into data blocks
e Data blocks transformed into server blocks

* Server blocks combined with those of previously published
server blocks (entanglement)

* Entangled server blocks are stored on servers

Data Server Previously Published New Server

Blocks Bl Server Blocks Blocks

-_—" @\tang/Q ' '
‘— —— B P
w-g — —




P————

Document Retrieval Operation

* Retrieve entangled server blocks from servers

* Entanglement is fault tolerant - don’t need
all entangled blocks to re-form data blocks

* DisEntangle Operation re-forms original data blocks

Entangled
Server Blocks

o\sEntang/e .

Data Blocks




s P

Block Entanglement Algorithm

» Utilizes Shamir’s Secret Sharing Algorithm
- Given a secret S can form n shares
- Any k of them can re-form S
- Less than k shares provide no information about S

* Entanglement is a secret sharing scheme with n=4 and k=3
* Two shares are previously published server blocks

* Two additional shares are created



P

Benefits Of Entanglement

* Dissociates blocks served from documents published
- Single block belongs to multiple documents
- Servers just hosting blocks

* Incentive
- Cache server blocks of entangled documents
- Monitor availability of other server blocks
- Re-inject blocks that have been deleted



P———

Tangler Servers (Tangle-Net)

* All servers fall into one of two categories -
non-faulty = follow Tangler protocols
faulty = servers that exhibit Byzantine failures

e All non-faulty servers are synchronized to within 10
minutes of correct time.

» Time is divided into rounds (24 hour period)
- Round o = Jan 1, 2002 (12:00AM)

* Fourteen consecutive rounds form an epoch



Tangler Round

* Round Activity (concurrent actions)

- Request storage tokens from other servers

- Grant storage tokens to other servers

- Send and receive blocks

- Monitor protocol compliance of other servers

- Process join requests

- Entangle new collections and retrieve old collections

* End of round
- Commit to blocks received from servers (Merkle Tree)
- Generate public/private key pair for the round
- Broadcast next round commitment and public key



P

Storage Tokens

* Two step protocol to store blocks

* First Step - Acquire storage tokens

- Every server entitled to number of storage tokens from
every other server

- Tokens acquired non-anonymously, requests are signed
by requestor

* Second Step - Redeem Token
- Send block & token anonymously to storing server
- Anonymous communication supported by Mix-Net



Storage Token Request

m Server A wants to store block 92180 on Server B
m Server A creates a blinded request for a token

= The blinded request is sent to server B

m Server B signs the request and returns it to A

m Server A unblinds request obtaining the token

\VsEg
— f’J V) - Val)
\e L)
v ) J
¢

|




Redeeming A Token

* Server A sends token & block through
Mix-Net to B

» Server B checks token signature, stores block, and returns signed
receipt over Mix-Net

e Server B commits to hash tree of all blocks

?Zﬂix-Net




Membership Changes

At end of epoch all non-faulty servers perform Byzantine Consensus
algorithm

Each server can vote out any other members

New servers can join at any time but must serve as a storage-only server
for a probationary period of two complete epochs

A probationary server is admissible if it was not ejectable for at least
two consecutive epochs.

Majority vote wins



P

Threats

* Majority of servers are adversarial
- Adversarial servers join

- Force non-faulty servers off

* Publishing server discovery
- Force suspected server off network

- Should be able to republish on another server but
may not have same credit limit

» Probabilistic failure (difficult to remove)



P ———

Summary

* P2P cooperative storage has been a major research area
for the community looking at network overlays

e Basically, they build an overlay somehow
e Then store files in it
e Much thought has gone into robustness

* Tangler is the “iron clad tank” of P2P cooperative
storage; PAST and CFS are relatively light weight

* But one worry is that all of these systems may suffer
from forms of thrashing driven by churn



