Content-Based Overlays

Ken Birman

Cornell University. CS5410 Fall 2008.




P ———

Content filtering

* Two kinds of publish-subscribe

* Topic-based: A topic defines the group of receivers.

e Some systems allow you to subscribe to a pattern that
matches sets of topics, by having a special “topics” meta-
topic, but this is still topic-oriented

e For scaling, typically must map topics to a smaller set of
multicast groups or overlays

* Content-based: A query determines the messages
that each receiver will accept

e Can implement in a database or in an overlay



Challenges...

* Each approach has substantial challenges
e For topic-based systems, the “channelization” problem
(mapping many topics to a small number of multicast
channels or overlays) is very hard
- In the most general cases, channelization is NP-complete!

 Yet some form of channelization may be critical because few
multicast mechanisms scale well if huge numbers of groups
are needed
e Today we won't look closely at the channelization
problem, but may revisit it later if time permits

« Under some conditions, may be solvable



Challenges...

* What about content-based solutions?

* We need to ask how to express queries “on content”
« Could use Xquery, the new XML query language

o Or could define a special-purpose packet inspection solution,
a so-called “deep packet inspector”

e Then would ideally want to build a smart overlay
- Any given packet routes towards its destinations...

» ...and any given router optimizes so that it doesn’t have an
amount of work proportional to the number of pending
content queries



P———

Scenarios

* When would content routing be helpful?

e In cloud systems, often want to route a request to some
system that processed prior work of a related nature

e For example, if I interact with Premier Cru to purchase
2007 Rhone red wines, as I query their data center it
could build up a cache of data. If my queries revisit the
same nodes, they perform far better

* In (unpublished) work at Amazon.com, the company
found that almost every service has “opinions” about
how to route messages within service clusters!



P ———

Scenarios

* What about out in the wild?

e Here, imagine using content filtering as a way to query
huge sets of RSS feeds

e User expresses “interests” and these map to content
queries... which route exactly the right stuff to him/her

* IBM Gryphon project: used this model, assumed that
clients would be corporate users (often stock traders)

e Siena: similar model but assumes more of a P2P
community in the Internet WAN



P ———

Things known about settings?

* All of these settings are very different

e Amazon’s world is dominated by machine-controlled
layout algorithms that selectively place services on
clusters. Produces all sorts of “regularities”

- E.g. clones of aservice often subscribe to the same data

« And if A and B, are collocated on node X, probably
representatives of A and B will always be collocated

e IBM’s world is dominated by heavy-tailed interest
behaviors: Traders specialize in various ways

e Siena world is more like a web search stream



P————

Examples of issues raised

* Early work on IBM’s Gryphon platform focused on in-
network aggregation of the queries

e They assumed that each message has an associated set
of tags (attached by sender for efficiency)

e Subscription was a predicate over these tags

e Their focus was on combining the predicates, in the
network, to avoid redundant work

* They got good results and even sold Gryphon as a
product. But...



P———

Thought question

* How often would you “expect” to have an opportunity
to do in-network query combinations?

* Would you prefer to do an in-network solution, like
Gryphon, or build a database solution like Cornell’s
Cayuga, where events can also be stored?



P————

... and the answer is

* For IBM’s corporate clients, there turned out to most
often be just a single Gryphon router per data center,
with WAN links between them

e In effect: Broadcast every event to all data centers
e Then filter at the last hop before delivery to client nodes
e Turns out that the router was fast enough for this model

* So all that in-network query combination work was
unneeded in most client settings!



P————

... and the rest of the answer?

* The majority of users had some form of archival
storage unit in each data center

e It subscribes to everything and keeps copies

e So in effect, the average user “turned Gryphon into
something much like Cayuga”

* Given this insight, Cayuga assumes full broadcast for
event streams, focuses on a database model with rapid
update rates. A more natural solution...



What about Amazon?

* Amazon has lots of packet-inspection routers that
peek inside data quickly and forward as appropriate

e Customized on a per-service basis

e Many packet formats... hence little commonality
between these inspection “applets”

* Motivates Cornell’s current work on “featherweight
processes’ to inspect packets at line speeds and exploit
properties of multicore machines for scalability



P———

Taking us to... Siena

* Relatively popular

e Claimed user community of a few hundred thousand
downloads

e Perhaps a few thousand of whom actually use the system

o Little known about the actual users

* Today we'll look at a slide set generously provided by
the development team



Remainder of today’s talk

* We'll dive down to look closely at Siena

* Covering all three scenarios is just more than we have
time to do



