Distributed Hash Tables

Ken Birman

Cornell University. CS5410 Fall 2008.

What is a Distributed Hash Table (DHT)?

* Exactly that ©

* A service, distributed over multiple machines, with
hash table semantics
e Put(key, value), Value = Get(key)
* Designed to work in a peer-to-peer (P2P) environment

e No central control
e Nodes under different administrative control

* But of course can operate in an “infrastructure” sense

More specifically

* Hash table semantics:
e Put(key, value),
e Value = Get(key)
» Key is a single flat string
e Limited semantics compared to keyword search
* Put() causes value to be stored at one (or more) peer(s)
* Get() retrieves value from a peer
* Put() and Get() accomplished with unicast routed messages
e In other words, it scales

* Other API calls to support application, like notification when
neighbors come and go

P———

P2P “environment”

* Nodes come and go at will (possibly quite frequently---
a few minutes)

* Nodes have heterogeneous capacities
e Bandwidth, processing, and storage
* Nodes may behave badly

e Promise to do something (store a file) and not do it
(free-loaders)

e Attack the system

Several flavors, each with variants
* Tapestry (Berkeley)

e Based on Plaxton trees---similar to hypercube routing

e The first* DHT

e Complex and hard to maintain (hard to understand
too!)

* CAN (ACIRI), Chord (MIT), and Pastry (Rice/MSR
Cambridge)

e Second wave of DHTs (contemporary with and
independent of each other)

* Landmark Routing, 1988, used a form of DHT

called Assured Destination Binding (ADB)

Basics of all DHTs

e Goal is to build some “structured”
o B overlay network with the following
characteristics:

e Node IDs can be mapped to the hash key
space

33

e Given a hash key as a “destination
81 58 address”, you can route through the
network to a given node

e Always route to the same node no
matter where you start from

P———

Simple example (doesn’t scale)

* Circular number space o to 127
127

11 13 * Routing rule is to move counter-
clockwise until current node ID > key,
97
- and last hop node ID < key
= £ * Example: key = 42

* Obviously you will route to node 58
from no matter where you start

Building any DHT

* Newcomer always starts with at least
o B one known member

97
33

81 58

@24

‘ Building any DHT

e Newcomer always starts with at least
one known member

* Newcomer searches for “self” in the
network
e hash key = newcomer’s node ID

e Search results in a node in the vicinity
where newcomer needs to be

Building any DHT

e Newcomer always starts with at least

o B one known member
- 24 ® Newcomer searches for “self” in the
network
33
e hash key = newcomer’s node ID
- e Search results in a node in the vicinity
58

where newcomer needs to be

* Links are added/removed to satisfy
properties of network

Building any DHT

e Newcomer always starts with at least

197 ., one known member
11 .
2 Newcomer searches for “self” in the
97 network

33 e hash key = newcomer’s node ID

e Search results in a node in the vicinity
81 Eq where newcomer needs to be

e Links are added/removed to satisty
properties of network

* Objects that now hash to new node are
transferred to new node

P———

Insertion/lookup for any DHT

* Hash name of object to produce key

11 S e Well-known way to do this
- 24 ® Use key as destination address to
s3 route through network
L e Routes to the target node
- 5 * Insert object, or retrieve object, at the

target node

4
4
4
4
4
7
4
. /

foo.htm—93

P

Properties of most DHTs

* Memory requirements grow (something like)
logarithmically with N

* Routing path length grows (something like)
logarithmically with N

* Cost of adding or removing a node grows (something
like) logarithmically with N

* Has caching, replication, etc...

DHT Issues

® Resilience to failures

* Load Balance
e Heterogeneity
e Number of objects at each node
e Routing hot spots
e Lookup hot spots
* Locality (performance issue)
* Churn (performance and correctness issue)

* Security

We're going to look at four DHTSs

* At varying levels of detail...
e CAN (Content Addressable Network)
« ACIRI (now ICIR)
e Chord
o MIT
e Kelips
« Cornell

e Pastry
 Rice/Microsoft Cambridge

——,

Things we’re going to look at

* What is the structure?

* How does routing work in the structure?
* How does it deal with node departures?
* How does it scale?

* How does it deal with locality?

* What are the security issues?

e

A

AN structure is a cartesian coordinate
space in a D dimensional torus

CAN graphics care of Santashil PalChaudhuri, Rice Univ

dlmen5|ons

! 4

Note: torus wraps on “top” and “sides”

P
;N
/
/

ch node in CAN network occupies
a “square” in the space

With relatively uniform square sizes

P———

Neighbors in CAN network

* Neighbor is a node
that:

e Overlaps d-1
dimensions

* Abuts along one
dimension

P———

Route to neighbors closer to target

Z1 - 72 73 74 Zn

* d-dimensional space

¢ n zones

e Zone is space occupied by a
“square” in one dimension

* Avg. route path length
* (d/4)(n"9)
* Number neighbors = O(d)

* Tunable (vary d or n)

* (Can factor proximity into
route decision

e
——

A

Chord uses a circular ID space

Key ID Node ID

-

K100 [N100

K5, K10

Circular

ID Space

N32 | K11, K30

K65, K70

N60 | K33, K40, K52

e Successor: node with next highest ID
Chord slides care of Robert Morris, MIT

Basic Lookup
/—> N5 =

N10
N110 \ “Where is key 507"
[v
N99 :

“Key 50 is
\ At N60” N32
N40

N8O '¥ — ‘//

e L ookups find the ID’s predecessor
e Correct If successors are correct

l Successor Lists Ensure Robust Lookup

10, 20, 32

20, 32, 40
5 10, 20 NllO//— N10

32, 40, 60

N20

110, 5, 10 | N99

n32 | 40, 60, 80

N

99,110,5 [N8ON___

N60 | 80, 99, 110

e Each node remembers r successors
e Lookup can skip over dead nodes to find blocks
e Periodic check of successor and predecessor links

N40 | 60, 80, 99

P————

hord “Finger Table” Accelerates Lookups

To build finger tables, new

/4 72 node searches for the key
values for each finger
. To do it efficiently, new
nodes obtain successor’s
116 finger table, and use as a
1/32 ; i
164 hint to optimize the search

N3O

Chord lookups take O(log N) hops

NS

N110

N99

N8O

N10

K19

N20

N32

N60

Lookup(K19)

Drill down on Chord reliability

* Interested in maintaining a correct routing table
(successors, predecessors, and fingers)

* Primary invariant: correctness of successor pointers

e Fingers, while important for performance, do not have
to be exactly correct for routing to work

e Algorithm is to “get closer” to the target
* Successor nodes always do this

P

Maintaining successor pointers

* Periodically run “stabilize” algorithm
e Finds successor’s predecessor
e Repair if this isn’t self

* This algorithm is also run at join

* Eventually routing will repair itself

* Fix_finger also periodically run
e For randomly selected finger

itial: 25 wants to join correct ring
(between 20 and 30)

Tou

25 finds successor,
and tells successor 20 runs “stabilize™

(30) of itself 20 asks 30 for 30’s predecessor
30 returns 25
20 tells 25 of itself

S time, 28 joins before 2
“stabilize”

* 1

20 runs “stabilize™;

28 finds successor,

and tells successor |
(30) of itself 20 asks 30 for 30’s predecessor

30 returns 28

20 tells 28 of itself

25 runs “stabilize”

20 runs “stabilize”

% Y, ais?use%s

number space
.\.\d4
_2e 046
d46alc
(d4

e Difference is in how
the “fingers” are
created

* Pastry uses prefix
match overlap rather
than binary splitting

* More flexibility in
neighbor selection

'/Pastry routing table (for node 65alfc)

B2 Adobe Acrobat - [pastry-proximity.pdf]

'@ File Edit Document Tools Wiew Window Help

=
tn
Se
h)
=
=

L
*
L
-

WS
= ™
qu\
a o
™

S =
HHm]HH

e
=

*

-

LR~

"

=
=

s e i

PR \H FREEN \H‘b&.
~y o>

HHMQ\HWm\HM
= 'y

H%mmkh
HHMQ\HHQ\HH
Hml.na\\i-:mm\h‘m
= >

-

= Son =

= QW

=] = >
“ TR > }H!:-'.n:\

Hhhhm/khhm
Hﬁhhmlhmhm
HHnmmﬂHHmm

oo R W
® o R
= W iR wun>
o LRy
“ s
SR >
»

= o R W >
s voR >
= R R WU

ac
ac

]

|«

=
Y
[
o
=3
—
i
-
=
o
in
5
=
—
5

Pastry nodes also
have a “leaf set” of
Immediate neighbors
up and down the ring

Similar to Chord’s list
of successors

Pastry join

X = new node, A = bootstrap, Z = nearest node
A finds Z for X
In process, A, Z, and all nodes in path send state tables to X
X settles on own table
e Possibly after contacting other nodes

X tells everyone who needs to know about itself

Pastry paper doesn’t give enough information to understand how
concurrent joins work

e 18th [FIP/ACM, Nov 2001

P

Pastry leave

* Noticed by leaf set neighbors when leaving node
doesn't respond

e Neighbors ask highest and lowest nodes in leaf set for
new leaf set

* Noticed by routing neighbors when message forward
fails

e Immediately can route to another neighbor

e Fix entry by asking another neighbor in the same “row”
for its neighbor

e If this fails, ask somebody a level up

For instance, this neighbor fails

_|Of x|
_|&] x|

B2 Adobe Acrobat - [pastry-proximity.pdf]

'@ File Edit Document Tools Wiew Window Help

-

Tsfx
E=T TV

NN R

o n U R

et e T

Ny D e

8|92(a |b |c |d |e |f

§|19|a |b |c |d e |f

il B

§|19|a |b |c |d |e |f

-
!

X |X |X |X |X |X¥ |[X |[X |X

-
!

o e

-
!

616 |6 6|6 |6 |6 |6 |6 |6

6

X [X |[X |X|X |X |X X |X |X

o e

ol W

oYy =

it B T

el B I

6 |6 |6 |6 [6]6 |6[6(6 |6 |6 |6 |6 |6
S N O O R O O O O R O O I R
a |a |a |a a|a |a |a|a |a |a a a |a

2|13 |4 1|5 |6

X |¥ |X |X |[X¥|X |[X¥ XX |¥ |X |X |[X¥ |X

s 0 =

0|1 (2|3 |4 |5
x |x |[x |x |x |[x

6 |6 |6 [6 |6
0|1 12 (3 |4
X |x |x | |x

165ﬂx

6

0

...

) W 4] 30f15 » M BS5x1lin O[= M

/T&

~Ask other neighbors '

B2 Adobe Acrobat - [pastry-proximity.pdf]

File Edit Document Tools Wiew Window Help

011|213 4|5 7 (8(9a |b |c |d |e |f
X |X |X¥ |X |X |X X |[X X X |X |X X |X |X
12l [|6 [6 |6 |6 |6 616 (6|66 |6 |6 |6 |6 |6
gl (o |1 |2 |3 |4 6|17 (8|9|a |b |c |d|e |f
X |x¥ [x¥ |x¥ [x X[x[x|x |[x |x |x |[¥ |x
6 16 |6 |6 |66 \66 |66 666\??
Cl s 155155515515 |5(5[|1515 15
Gl [lo (112 (3 (4\[51|6|7|8]|9] |b|c||d |e |F
X lx |x |x |x\x Ix |x [x |x x.x.x/xx
G — A N e
6 66666666666/_6,-6’?
5 555555£L?f5555
a a |\a |a |a a |a|aja |a |a a a |a
0 2 (3|4 |5 789 |a |b |c |d e |f
X X |X [X |[X |[F\X /X |[X |[X |[X |[X X |X |X
) W 4] 30f15 » M Baxiln O] 5 # 4] |

Try asking some neighbor
in the same row for its

~ 655X entry

If it doesn’t have one, try
asking some neighbor in
"

the row below, etc.

CAN, Chord, Pastry differences

* CAN, Chord, and Pastry have deep similarities

* Some (important???) differences exist
e CAN nodes tend to know of multiple nodes that allow
equal progress
 Can therefore use additional criteria (RTT) to pick next hop
e Pastry allows greater choice of neighbor
« Can thus use additional criteria (RTT) to pick neighbor

e In contrast, Chord has more determinism
« Harder for an attacker to manipulate system?

Security Issues

* In many P2P systems, members may be malicious
* If peers untrusted, all content must be signed to detect
forged content
e Requires certificate authority
e Like we discussed in secure web services talk

e This is not hard, so can assume at least this level of
security

Security issues: Sybil attack

* Attacker pretends to be multiple system

e [f surrounds a node on the circle, can potentially arrange to capture
all traffic

e Orif not this, at least cause a lot of trouble by being many nodes

* Chord requires node ID to be an SHA-1 hash of its IP address

e But to deal with load balance issues, Chord variant allows nodes to
replicate themselves

» A central authority must hand out node IDs and certificates to go
with them

e Not P2P in the Gnutella sense

P

General security rules

* Check things that can be checked
e Invariants, such as successor list in Chord

e Minimize invariants, maximize randomness
e Hard for an attacker to exploit randomness

* Avoid any single dependencies
e Allow multiple paths through the network

e Allow content to be placed at multiple nodes

* But all this is expensive...

P

Load balancing

* Query hotspots: given object is popular
e Cache at neighbors of hotspot, neighbors of neighbors,
etc.

e Classic caching issues

* Routing hotspot: node is on many paths

e Of the three, Pastry seems most likely to have this
problem, because neighbor selection more flexible (and
based on proximity)

e This doesn’t seem adequately studied

Load balancing

* Heterogeneity (variance in bandwidth or node
capacity

® Poor distribution in entries due to hash function
1naccuracies

® One class of solution is to allow each node to be
multiple virtual nodes

e Higher capacity nodes virtualize more often
e But security makes this harder to do

ord node virtualization

Acrobat Reader - [chord-ton.pdf]
E File Edit Document View Window Help

=10l x|
=171 x|

Mes B O B oy e OO0 #8R O

500

450

400

350

300

250

200

Number of keys per real node

150

100

50

0

' 1
1st and 99th percentiles ~+—

10K nodes, 1M objects

20 virtual nodes per node has much
better load balance, but each node
requires ~400 neighbors!

1

-
ael 400w H|HI1I 9 0f 14 |>|H|I 25 = 11in .;I ‘I —I —I’

10
Number of virtual nodes per real node

P————

Primary concern: churn

* Churn: nodes joining and leaving frequently
* Join or leave requires a change in some number of links

* Those changes depend on correct routing tables in
other nodes
e Cost of a change is higher if routing tables not correct

e In chord, ~6% of lookups fail if three failures per
stabilization

* But as more changes occur, probability of incorrect
routing tables increases

Control traffic load generated by churn

* Chord and Pastry appear to deal with churn differently
* Chord join involves some immediate work, but repair is done
periodically
e Extra load only due to join messages
* Pastry join and leave involves immediate repair of all effected
nodes’ tables

e Routing tables repaired more quickly, but cost of each join/leave
goes up with frequency of joins/leaves

e Scales quadratically with number of changes???
e Can result in network meltdown???

P

Kelips takes a different approach

» Network partitioned into YN “affinity groups”

* Hash of node ID determines which affinity group a
node is in

* Each node knows:
e One or more nodes in each group

e All objects and nodes in own group

* But this knowledge is soft-state, spread through peer-
to-peer “gossip” (epidemic multicast)!

Kelips

Affinity
Affinity group view peer membership th

consist hash
id hbeat rtt e‘

30 234 | 90ms / 1% 2l J%—l

0

230 | 322 | 30ms
> - _
;3: ;02 membgrs_
| per affinity
H group

30

- >u - =

Affinity group

pointers

Kelips

/ Affinity group view

id hbeat | rtt
30 234 | 90ms
230 | 322 | 30ms
Contacts
group | contactNode
2 202

o

0 1

— o u
e ;O ° members
] per affinity
N group
30
B |
pointers

Kelips
/ Affinity group view

id hbeat rtt /
Vo

30 234 | 90ms

0 i o
230 | 322 | 30ms >1.10\ / m -
[
Mo R
ContaCtS / - \' [202 \ \/N
n N T members
group | contactNode I] per affinity
u \ : group
% “ i
2 202 u , WY -
\ /
A 7/

Resource Tuples ;
Gossip protocol

replicates data
cheaply

resource info

\ cnn.com 110 /

P

How it works

* Kelips is entirely gossip based!
e Gossip about membership
e Gossip to replicate and repair data

e Gossip about “last heard from” time used to discard
failed nodes

* Gossip “channel” uses fixed bandwidth
e ... fixed rate, packets of limited size

Gossip 101

* Suppose that I know something
* I'm sitting next to Fred, and I tell him

e Now 2 of us “know”
e Later, he tells Mimi and I tell Anne

e Now 4
* This is an example of a push epidemic
* Push-pull occurs if we exchange data

——,

Gossip scales very nicely

* Participants’ loads independent of size
* Network load linear in system size
* Information spreads in log(system size) time

=
o

% infected

o
o

Time >

P

Gossip in distributed systems

* We can gossip about membership

e Need a bootstrap mechanism, but then discuss failures,
new members

* Gossip to repair faults in replicated data
e “T have 6 updates from Charlie”

* If we aren’t in a hurry, gossip to replicate data too

P

Gossip about membership

e Start with a bootstrap protocol

e For example, processes go to some web site and it lists a
dozen nodes where the system has been stable for a long
time

e Pick one at random

* Then track “processes I've heard from recently”
and “processes other people have heard from
recently”

* Use push gossip to spread the word

P————

Gossip about membership

* Until messages get full, everyone will known when
everyone else last sent a message

e With delay of log(N) gossip rounds...

* But messages will have bounded size
e Perhaps 8K bytes

e Then use some form of “prioritization” to decide what to
omit — but never send more, or larger messages

e Thus: load has a fixed, constant upper bound except on
the network itself, which usually has infinite capacity

Back to Kelips: Quick reminder

/ Affinity group view

id hbeat | rtt
30 234 | 90ms
230 | 322 | 30ms
Contacts
group | contactNode
2 202

Affinity Groups:
peer membership thru
consistent hash

- h

/

110

23

. u
N
| \ 0
;02 members
[per affinity
N group
|

Contact
pointers

Node 175 is a
contact for Node
102 in some

175
<=~

' IS

* Gossip about everything

* Heuristic to pick contacts: periodically ping contacts to
check liveness, RTT... swap so-so ones for better ones.

P

Replication makes it robust

* Kelips should work even during disruptive episodes
o Afterall, tuples are replicated to YN nodes

e Query k nodes concurrently to overcome isolated
crashes, also reduces risk that very recent data could be
missed

* ... we often overlook importance of showing that
systems work while recovering from a disruption

ord can malfunction |
network partitions...

... SO, who cares?

* Chord lookups can fail... and it s
overheads when nodes churn

e Worst cas hord can become inconsistent

Control traffic load generated by churn

O(Changes
None O(changes) X Nodes)?

Kelips Chord Pastry

P

Take-Aways?

* Surprisingly easy to superimpose a hash-table lookup
onto a potentially huge distributed system!

e We've seen three O(log N) solutions and one O(1)
solution (but Kelips needed more space)

* Sample applications?
 Peer to peer file sharing

e Amazon uses DHT for the shopping cart
e CoDNS: A better version of DNS

