Virtual Synchrony, Paxos,
and Beyond

Ken Birman

Cornell University. CS5410 Fall 2008.

P ———

Virtual Synchrony

* A powerful programming model!
* Key idea: equate “group” with “data abstraction”
e Each group implements some object
e An application can belong to many groups
e Virtual synchrony is the associated consistency model:

e Process groups with state transfer, automated fault
detection and membership reporting

e Ordered reliable multicast, in several flavors
* Extremely good performance

* Assumes that the membership oracle is available

Why “virtual” synchrony?

* What would a synchronous execution look like?

* In what ways is a “virtual” synchrony execution not the
same thing?

A synchronous execution

{m=

u

With true synchrony executions run in
genuine lock-step.

GMS treated as a membership oracle

Virtual Synchrony at a glance &R E

Z. @\A \/: \ s
i u | i 1

* With virtual synchrony executions only look
“lock step” to the application

Virtual Synchrony at a glance

== E |
/ \”ﬁ 2 W /

We use the weakest (hence fastest) form of
communication possible

P ———

f/c/abcast, flush...

* Last week we saw how the GMS could support
protocols that have various forms of ordering

e One option is to run them “inside” the GMS
* But suppose that we use the GMS to manage
membership of processes other than the GMS servers

e This is easy do to! Our protocols didn’t “need” to run
inside the GMS per-se!

e Group runs “outboard” and protocols send messages
directly between the members

e GMS involved only if the group view changes

P——————

Chances to “weaken” ordering

* For example, imagine a data replication object
with variables “inside”, and suppose that any
conflicting updates are synchronized using some
form of locking

e Multicast sender will have mutual exclusion

e Hence simply because we used locks, cbcast delivers
conflicting updates in order they were performed!

* If our system ever does see concurrent multicasts...
they must not have conflicted. So it won't matter
if cbcast delivers them in different orders at
different recipients!

”

Causally ordered updates

* Each thread corresponds to a different lock

GI\/IS

A

| \\//\,\ﬁ
| e /\

A\

* The “group” is best Vlsuahzed as a kind of object
that has a replica associated with each process

* Within it, red “events” never conflict with blue!

P ———

Strong to weak...

* Definition: a multicast is safe, also called dynamically
uniform, if:
e If any group member delivers it to the application layer,
then every group member will do so, unless it fails
e And this is true even if the first deliveries are in
processes that fail

® QOur fbcast and cbcast and abcast protocols from last
week were not safe!

e They delivered “early” and hence if the first processes to
deliver copies failed, the event might be lost

P ———

Strong to weak

* A safe/dynamically uniform protocol needs two phases

e Phase 1: Deliver a copy to at least a majority of the
members of the current view. Recipients acknowledge

e ... but instead of delivering to the application layer, they
retain these copies in buffers

e Phase 2: Sender detects that a majority have a copy, tells
recipients that now they can deliver

® Much slower... but now a failure can’t erase a multicast.

* Same ordering options exist

P———

In general?

* Start by thinking in terms of safe abcast (== gbcast!)

* Then replace “safe” (dynamic uniformity) protocols
with a standard multicast when possible

* Weaken ordering, replacing abcast with cbcast
* Weaken even more, replacing cbcast with fbcast

P

More tricks of the trade

® Multicast primitives usually can support replies!
e No replies: the multicast is asynchronous

e One reply: like an anycast - all receive, but any one reply
will suffice (first one wins if several reply...)

e Creplies: for a constant C (rarely supported)
e ALL replies: wait for every group member to reply

e Failure: treated as a “null reply”

* Want speed? Ask for as few replies as possible!

P———

Why “virtual” synchrony?

* The user sees what looks like a synchronous execution
e Simplifies the developer’s task
* But the actual execution is rather concurrent and
asynchronous
e Maximizes performance

e Reduces risk that lock-step execution will trigger
correlated failures

P————

Correlated failures

» Observation: virtual synchrony makes these less
likely!
e Recall that many programs are buggy
e Often these are Heisenbugs (order sensitive)
* With lock-step execution each group member sees
group events in identical order
e So all die in unison

* With virtual synchrony orders differ

e So an order-sensitive bug might only kill one group
member!

P

Programming with groups

* Many systems just have one group
e E.g. replicated bank servers
e Cluster mimics one highly reliable server
* But we can also use groups at finer granularity
e E.g. to replicate a shared data structure
e Now one process might belong to many groups

* A further reason that different processes might see
different inputs and event orders

P

Embedding groups into “tools”

* We can design a groups API:
e pg_join(), pg_leave(), cbcast()...

* But we can also use groups to build other higher level
mechanisms

e Distributed algorithms, like snapshot

e Fault-tolerant request execution
e Publish-subscribe

P

Distributed algorithms

* Processes that might participate join an appropriate
group
* Now the group view gives a simple leader election rule

e Everyone sees the same members, in the same order,
ranked by when they joined

e Leader can be, e.g., the “oldest” process

P———

Distributed algorithms

* A group can easily solve consensus
e Leader multicasts: “what’s your input”?
e All reply: “Mine is 0. Mineis1”

e Initiator picks the most common value and multicasts
that: the “decision value”

e If the leader fails, the new leader just restarts the
algorithm

® Puzzle: Does FLP apply here?

Distributed algorithms

* A group can easily do consistent snapshot algorithm

e Either use cbcast throughout system, or build the
algorithm over gbcast

e Two phases:

» Start snapshot: a first cbcast

» Finished: a second cbcast, collect process states and channel
logs

Distributed algorithms: Summary

® Leader election

* Consensus and other forms of agreement like voting

* Snapshots, hence deadlock detection, auditing, load
balancing

P ———

More tools: fault-tolerance

» Suppose that we want to offer clients “fault-
tolerant request execution”

e We can replace a traditional service with a group of
members

e Each request is assigned to a primary (ideally, spread the
work around) and a backup
« Primary sends a “cc” of the response to the request to the backup

e Backup keeps a copy of the request and steps in only if
the primary crashes before replying
* Sometimes called “coordinator/cohort” just to
distinguish from “primary/backup”

——,
————

Publish / Subscribe

* Goal is to support a simple API:

e Publish(“topic”, message)
e Subscribe(“topic”, event_hander)
* We can just create a group for each topic
e Publish multicasts to the group
e Subscribers are the members

P————

Scalability warnings!

* Many existing group communication systems don’t
scale incredibly well
e E.g. JGroups, Ensemble, Spread
e Group sizes limited to perhaps 50-75 members
e And individual processes limited to joining perhaps 50-
75 groups (Spread: see next slide)
* Overheads soar as these sizes increase

e Each group runs protocols oblivious of the others, and
this creates huge inefficiency

P ———

Publish / Subscribe issue?

* We could have thousands of topics!

e Too many to directly map topics to groups

* Instead map topics to a smaller set of groups.
e SPREAD system calls these “lightweight” groups

e Mapping will result in inaccuracies... Filter incoming
messages to discard any not actually destined to the
receiver process

* Cornell’s new QuickSilver system will instead
directly support immense numbers of groups

Other “toolkit” ideas

* We could embed group communication into a
framework in a “transparent” way
e Example: CORBA fault-tolerance specification does
lock-step replication of deterministic components
e The client simply can't see failures

 But the determinism assumption is painful, and users have
been unenthusiastic

« And exposed to correlated crashes

P———

Other similar ideas

* There was some work on embedding groups into
programming languages
e But many applications want to use them to link
programs coded in different languages and systems

e Hence an interesting curiosity but just a curiosity

® More work is needed on the whole issue

——,

Existing toolkits: challenges

* Tensions between threading and ordering
e We need concurrency (threads) for perf.

e Yet we need to preserve the order in which “events” are
delivered

* This poses a difficult balance for the developers

P———

Preserving order

G,={p,q} m; m, G,={p.,q.r}

Time —»
/ / / / application

i

P———

The tradeoff

* If we deliver these upcalls in separate threads,
concurrency increases but order could be lost

* If we deliver them as a list of event, application
receives events in order... but if it uses thread pools
(most famous version of this is called SEDA),
the order is lost

Solution used in Horus

* This system

 Delivered upcalls using an event model
e Each event was numbered

e User was free to

e Run a single-threaded app
« Use a SEDA model

* Toolkit included an “enter/leave region in order”
synchronization primitive

e Forced threads to enter in event-number order

P

Other toolkit “issues”

* Does the toolkit distinguish members of a group
from clients of that group?

e In Isis system, a client of a group was able to multicast to
it, with vsync properties

e But only members received events

* Does the system offer properties “across group
boundaries”?

e For example, using cbcast in multiple groups

% res of m M

synchrony platforms

* Isis: First and no longer widely used

e But was perhaps the most successful; has major roles in
NYSE, Swiss Exchange, French Air Traffic Control
system (two major subsystems of it), US AEGIS Naval
warship

e Also was first to offer a publish-subscribe interface that
mapped topics to groups

% res of m M

synchrony platforms

* Totem and Transis
e Sibling projects, shortly after Isis

e Totem (UCSB) went on to become Eternal and was the
basis of the CORBA fault-tolerance standard

e Transis (Hebrew University) became a specialist in
tolerating partitioning failures, then explored link
between vsync and FLP

res of maj
synchrony platforms

* Horus, JGroups and Ensemble
e All were developed at Cornell: successors to Isis
e These focus on flexible protocol stack linked directly into
application address space
« A stack is a pile of micro-protocols

» (Can assemble an optimized solution fitted to specific needs of the
application by plugging together “properties this application requires’,
lego-style

» The system is optimized to reduce overheads of this compositional style
of protocol stack

e JGroups is very popular.
e Ensemble is somewhat popular and supported by a user
community. Horus works well but is not widely used.

Horus/JGroups/Ensemble protocol stacks

Application belongs to process group

total

parcld

frag

mbrshp

nak

frag

comm

nak

total
fc merge
mbrshp |4 |mbrshp
frag frag
nak nak
comm |/ | comm

comm

JGroups (part of JBoss)

* Developed by Bela Ban

e Implements group multicast tools
« Virtual synchrony was on their “to do” list

 But they have group views, multicast, weaker forms of
reliability

e Impressive performance!
e Very popular for Java community

* Downloads from www.JGroups.org

P

Spread Toolkit

* Developed at John Hopkins

e Focused on a sort of “RISC” approach
 Very simple architecture and system
« Fairly fast, easy to use, rather popular
e Supports one large group within which user sees many

small “lightweight” subgroups that seem to be free-
standing

e Protocols implemented by Spread “agents” that relay
messages to apps

P

Quicksilver

* Under development here at Cornell
* Remarkably scalable, stable, fast

* But current emphasis is on use within Live Objects
framework, not as a general purpose toolkit

* Focus of the research right now: a “properties
framework” in which protocol properties

e Are specified in a high-level language
e Which compiles to a specialized runtime infrastructure

P ———

What about Paxos?

* Protocol developed by Lamport

e Initial version was for a fixed group membership, and
allowed any process to propose an update

e Later refined with a leader-driven version very similar to
the GMS view update protocol

* Lamport proposed an elegant safety proof that
remains a classic

* Actual Paxos implementations need to deal with
dynamic membership and are much more complex,
resemble virtual synchrony

P ———

What about Paxos?

» Basically, Paxos offers the user a safe (dynamically
uniform) abcast protocol

e Asyou would expect, this is quite slow compared to
asynchronous non-dynamically uniform fbcast...

e ... But modern computers are very fast and perhaps the
performance hit isn’t such an issue

* Google uses this in Chubby, a lock service

* Microsoft also uses it, in SQL server clusters (also for
locking). But they use virtual synchrony in the
Enterprise Cluster Manager itself.

Virtual Synchrony, Paxos... and beyond?

* Work underway at Microsoft Silicon Valley is seeking
to unify the models

e They are talking about “virtually synchronous Paxos”
e Goal is to have

« Dynamic membership with view synchrony
» Paxos as the basic protocol for new events

 Proof system, as in the case of basic Paxos, to let people prove
protocols correct and reason about their applications

P——————

Summary?

* Role of a toolkit is to package commonly used,
popular functionality into simple API and
programming mode

0 GrouF communication systems have been more
popular when offered in toolkits

e If groups are embedded into programming languages,
we limit interoperability

e If groups are used to transparently replicate
deterministic objects, we're too inflexible

* Many modern systems let you match the protocol
to your application’s requirements

