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Maelstrom Ricochet Conclusion

Datacenters

I Internet Services (90s) — Websites, Search, Online Stores
I Since then:

# of low-end volume servers
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I Commodity — up by 100%
I High/Mid — down by 40%

I Today: Datacenters are ubiquitous
I How have they evolved?

Data partially sourced from IDC press releases (www.idc.com)
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Networks of Datacenters

Why?
Business Continuity,
Client Locality,
Distributed Datasets
or Operations ...
Any modern
enterprise!
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Networks of Real-Time Datacenters

I Finance, Aerospace, Military, Search and Rescue...
I ... documents, chat, email, games, videos, photos, blogs,

social networks
I The Datacenter is the Computer!
I Not hard real-time: real fast, highly responsive, time-critical

Gartner Survey:
I Real-Time Infrastructure (RTI): reaction time in secs/mins
I 73%: RTI is important or very important
I 85%: Have no RTI capability
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The Real-Time Datacenter — Systems Challenges
How do we recover from failures within seconds?
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Reliable Communication

Goal: Recover lost packets fast !

I Existing protocols react to loss: too much, too late
I We want proactive recovery: stable overhead, low latencies

I Maelstrom: Reliability between datacenters [NSDI 2008]
I Ricochet: Reliability within datacenters [NSDI 2007]
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Reliable Communication between Datacenters

TCP fails in three ways:

1. Throughput Collapse
100ms RTT, 0.1% Loss, 40 Gbps→ Tput < 10 Mbps!

2. Massive Buffers required for High-Rate Traffic
3. Recovery Delays for Time-Critical Traffic

Current Solutions:
I Rewrite Apps: One Flow→ Multiple Split Flows
I Resize Buffers
I Spend (infinite) money!
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TeraGrid: Supercomputer Network
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TeraGrid: Supercomputer Network

I End-to-End UDP Probes: Zero
Congestion, Non-Zero Loss!

I Possible Reasons:
I transient congestion
I degraded fiber
I malfunctioning HW
I misconfigured HW
I switching contention
I low receiver power
I end-host overflow
I ...
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Problem Statement

Run unmodified TCP/IP over lossy high-speed
long-distance networks
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The Maelstrom Network Appliance

Packet LossSending End-hosts
Commodity TCP

Receiving End-hosts
Commodity TCP

Router Router

Transparent: No modification to end-host or network
FEC = Forward Error Correction
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What is FEC?

A B C D E X X X C D E A B

3 repair packets from 
every 5 data packets 

Receiver can recover 
from any 3 lost packets

Rate : (r , c) — c repair packets for every r data packets.

I Pro: Recovery Latency independent of RTT
I Constant Data Overhead: c

r+c
I Packet-level FEC at End-hosts: Inexpensive, No extra HW

I Con: Recovery Latency dependent on channel data rate

I FEC in the Network:

I Where and What?
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The Maelstrom Network Appliance

Packet LossSending End-hosts
Commodity TCP

Receiving End-hosts
Commodity TCP

Router Router

Maelstrom 
Receive-Side 

Appliance

Maelstrom 
Send-Side 
Appliance

FEC
Encode Decode

Transparent: No modification to end-host or network
FEC = Forward Error Correction
Where: at the appliance, What: aggregated data
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Maelstrom Mechanism

Send-Side Appliance:
I Snoop IP packets
I Create repair packet =

XOR + ‘recipe’ of data
packet IDs

Receive-Side Appliance:
I Lost packet recovered

using XOR and other
data packets

I At receiver end-host: out
of order, no loss
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Layered Interleaving for Bursty Loss
Recovery Latency ∝ Actual Burst Size, not Max Burst Size

3 2 1

X1

1121

X2

101201

X3

Data Stream

XORs:

I XORs at different interleaves
I Recovery latency degrades gracefully

with loss burstiness:
X1 catches random singleton losses
X2 catches loss bursts of 10 or less
X3 catches bursts of 100 or less

Comparison of Recovery
Probability: r=7, c=2

2in2in
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Maelstrom Modes

I TCP Traffic: Two Flow Control Modes

A) End-to-End Flow Control

End-Host End-HostAppliance Appliance

B) Split Flow Control

End-Host End-HostAppliance Appliance

I Split Mode avoids client buffer resizing (PeP)
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Implementation Details

I In Kernel — Linux 2.6.20 Module
I Commodity Box: 3 Ghz, 1 Gbps NIC (≈ 800$)
I Max speed: 1 Gbps, Memory Footprint: 10 MB
I 50-60% CPU→ NIC is the bottleneck (for c = 3)

I How do we efficiently store/access/clean a gigabit of data
every second?

I Scaling to Multi-Gigabit: Partition IP space across proxies

Mahesh Balakrishnan Reliable Communication for Datacenters
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Evaluation: FEC Mode and Loss
Claim: Maelstrom effectively hides loss from TCP/IP
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Evaluation: Split Mode and Buffering
Claim: Maelstrom eliminates the need for large end-host buffers
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Evaluation: Delivery Latency
Claim: Maelstrom eliminates TCP/IP’s loss-related jitter
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Sources of Jitter:
I Receive-side buffering due to sequencing
I Send-side buffering due to congestion control
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Evaluation: Layered Interleaving
Claim: Recovery Latency depends on Actual Burst Length
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I Longer Burst Lengths→ Longer Recovery Latency
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Next Step: SMFS - The Smoke and Mirrors Filesystem

I Classic Mirroring Trade-off:
I Fast — return to user after sending to mirror
I Safe — return to user after ACK from mirror

I SMFS — return to user after sending enough FEC
I Maelstrom: Lossy Network→ Lossless Network→ Disk!
I Result: Fast, Safe Mirroring independent of link length!
I General Principle: Gray-box Exposure of Protocol State

Mahesh Balakrishnan Reliable Communication for Datacenters
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The Big Picture
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Maelstrom Ricochet Conclusion Motivation Design and Implementation Evaluation

From Long-Haul to Multicast

Data

acks

High RTT

Sender Receiver

Between 
Datacenters

I Feedback Loop Infeasible:
I Inter-Datacenter Long-Haul: RTT too high

I Intra-Cluster Multicast: Too many receivers

Mahesh Balakrishnan Reliable Communication for Datacenters



Maelstrom Ricochet Conclusion Motivation Design and Implementation Evaluation

From Long-Haul to Multicast

Data

acks

High RTT

Sender Receiver

Between 
Datacenters

M
an

y 
R

ec
ei

ve
rs

Data

Data

acks

acks 

Within 
Datacenter

Data

Multicast 
Group

I Feedback Loop Infeasible:
I Inter-Datacenter Long-Haul: RTT too high
I Intra-Cluster Multicast: Too many receivers

Mahesh Balakrishnan Reliable Communication for Datacenters



Maelstrom Ricochet Conclusion Motivation Design and Implementation Evaluation

How is Multicast Used?
service replication/partitioning, publish-subscribe, data caching...

Financial Pub-Sub Example:
I Each equity is mapped to

a multicast group
I Each node is interested

in a different set of
equities ...

Each node in many groups
=⇒ Low per-group data rate

High per-node data rate
=⇒ Overload

Tracking 
S&P 500

Tracking 
Portfolio
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Where does loss occur in a Datacenter?

Packet Loss occurs at end-hosts: independent and bursty
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Problem Statement

I Recover lost packets
rapidly!

I Scalability:

I Number of Receivers
I Number of Senders
I Number of Groups

Multicast 
Data

Lost 
Packet
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Design Space for Reliable Multicast
How does latency scale?

Sender

data

Loss

I 1. acks: implosion
I 2. naks
I 3. Sender-based FEC

recovery latency ∝ 1
datarate

data rate:
one sender, one group

I FEC in the network:
Where and What?

Receiver-based FEC: at receivers, from incoming data
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Receiver-Based Forward Error Correction

I Receiver generates an XOR of r
incoming multicast packets and
exchanges with other receivers

I Each XOR sent to c other
random receivers

I Rate: (r , c)

I latency ∝ 1P
s datarate

data rate: across all senders, in
a single group
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Lateral Error Correction: Principle

B2

IN
C

O
M

IN
G

 D
A

TA
 P

A
C

K
E

TS

A1

A2
A3

B2

B1

A4

A5

B4

B3

A6
B5

A1

A2

A3

B1

A4

A5
B4

B3

A6

B5

IN
C

O
M

IN
G

 D
A

TA
 P

A
C

K
E

TS
Loss

Repair Packet I:(A1,A2,A3,A4,A5)

Repair Packet II:(B1,B2,B3,B4,B5)

Recovery

Receiver 
R2

Receiver 
R1

Group 
A

Group 
B

I Single-Group RFEC

I Lateral Error Correction

I Create XORs from multiple
groups→ faster recovery!

I What about complex
overlap?

Mahesh Balakrishnan Reliable Communication for Datacenters



Maelstrom Ricochet Conclusion Motivation Design and Implementation Evaluation

Lateral Error Correction: Principle

B2

IN
C

O
M

IN
G

 D
A

TA
 P

A
C

K
E

TS

A1

A2
A3

B2

B1

A4

A5

B4

B3

A6
B5

A1

A2

A3

B1

A4

A5
B4

B3

A6

B5

IN
C

O
M

IN
G

 D
A

TA
 P

A
C

K
E

TS
Loss

Repair Packet I:(A1,A2,A3,B1,B2)

Repair Packet II:(A4,B3,B4,A5,A6)

Recovery

Receiver 
R2

Receiver 
R1

Group 
A

Group 
B

I Single-Group RFEC
I Lateral Error Correction

I Create XORs from multiple
groups→ faster recovery!

I What about complex
overlap?

Mahesh Balakrishnan Reliable Communication for Datacenters



Maelstrom Ricochet Conclusion Motivation Design and Implementation Evaluation

Nodes and Disjoint Regions
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I Receiver n1 belongs to
groups A, B, and C

I Divides groups into
disjoint regions

I Is unaware of groups it
does not belong to (D)

I Works with any conventional Group Membership Service
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Regional Selection
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I From each region, select
proportional fraction of
cA: cx

A = |x |
|A| · cA

latency ∝ 1P
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data rate: across all senders, in intersections of groups
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Scalability in Groups
Claim: Ricochet scales to hundreds of groups.
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Comparision: At 128 groups, NAK/SFEC latency is 8 seconds.
Ricochet is 400 times faster!
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Distribution of Recovery Latency
Claim: Ricochet is reliable and time-critical
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Most lost packets recovered < 50ms by LEC.
Remainder via reactive NAKs.

Bursty Loss: 100 packet burst→ 90% recovered at 50 ms avg
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Next Step: Dr. Multicast

I IP Multicast has a bad reputation!
I Unscalable filtering at routers/switches/NICs
I Insecure

I Insight: IP Multicast is a shared, controlled resource
I Transparent interception of socket system calls
I Logical address→ Set of network (uni/multi)cast addresses
I Enforcement of IP Multicast policies
I Gossip-based tracking of membership/mappings
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Conclusion

I The Real-Time Datacenter
I Recover from failures within seconds

I Reliable Communication: FEC in the Network
I Recover lost packets in milliseconds
I Maelstrom: between Datacenters
I Ricochet: within Datacenters

Thank You!
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Extra Slide: FEC and Bursty Loss

I Existing solution:
interleaving

I Interleave i and rate
(r , c) tolerates (c ∗ i)
burst...

I ...with i times the latency
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X X X

F G H I J

A C E G I

X X XB D F H J

Figure: Interleave of 2 — Even
and Odd packets encoded
separately

Wanted: Graceful degradation of recovery latency with actual
burst size for constant overhead
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Extra Slide: Maelstrom Evaluation
Maelstrom goodput is near theoretical maximum
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Extra Slide: Layered Interleaving
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Evaluation: Layered Interleaving
Claim: Recovery Latency depends on Actual Burst Length
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TeraGrid: Supercomputer Network

I End-to-End UDP Probes: Zero
Congestion, Non-Zero Loss!

I Possible Reasons:
I transient congestion
I degraded fiber
I malfunctioning HW
I misconfigured HW
I switching contention
I low receiver power
I end-host overflow
I ...
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Evaluation: Split Mode and Buffering
Claim: Maelstrom eliminates the need for large end-host buffers
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Evaluation: FEC mode and loss
Claim: Maelstrom works at high loss rates
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