State Machine Concept

Ken Birman

Cornell University. CS5410 Fall 2008.




P———

State Machines: History

* Idea was first proposed by Leslie Lamport in 1970’s

® Builds on notion of a finite-state automaton

e We model the program of interest as a black box with
inputs such as timer events and messages

e Assume that the program is completely deterministic

® Our goal is to replicate the program for fault-tolerance
e So: make multiple copies of the state machine

e Then design a protocol that, for each event, replicates
the event and delivers it in the same order to each copy

e The copies advance through time in synchrony



e
—

A

State Machine

Event e P.rogram
> 1n state
S

¥

Program
in state
St+1




State Machine

in state
S

Program Program Program
in state in state in state
S S

t+1 t+1 t+l

Program Program
in state in state
St




P

A simple fault-tolerance concept

* We replace a single entity P with a set

* Now our set can tolerate faults that would have caused
P to stop providing service

e Generally, thinking of hardware faults
 Software faults might impact all replicas in lock-step!

¢ Side discussion:
e Why do applications fail? Hardware? Software?



P ———

(Sidebar) Why do systems fail?

* A topic studied by many researchers
e They basically concluded that bugs are the big issue

e Even the best software, coded with cleanroom
techniques, will exhibit significant bug rates

e Hardware an issue too, of course!

* Sources of bugs?
e Poor coding, inadequate testing

e Vague specifications, including confusing
documentation that was misunderstood when someone
had to extend a pre-existing system

e Bohrbugs and Heisenbugs



(Sidebar) Why do systems fail?

* Bohrbug:

e Term reminds us of Bohr’s model of the nucleus:

« A solid little nugget
e If you persist, you'll manage to track it down

« Like a binary search




P

(Sidebar) Why do systems fail?

* Heisenbug:
e Term reminds us of Heisenberg’s model of the nucleus:
« A wave function: can’t know both location and momentum

e Every time you try to test the program, the test seems to
change its behavior

e Often occurs when the “bug” is really a symptom of
some much earlier problem




Most studies?
¢ Early systems dominated by Bohrbugs

* Mature systems show a mix
e Many problems introduced by attempts to fix other bugs
e Persistent bugs usually of Heisenbug variety

e Over long periods, upgrading environment can often
destabilize a legacy system that worked perfectly well

® Cloud scenario

e “Rare” hardware and environmental events are actually
very common in huge data centers



P

Determinism assumption

* State machine replication is
e Easy to understand

e Relatively easy to implement
e Used in a CORBA “fault-tolerance” standard

* But there are a number of awkward assumptions

* Determinism is the first of these

* Question: How deterministic is a modern application,
coded in a language such as Java?



P ———

Sources of non-determinism
* Threads and thread scheduling (parallelism)

* Precise time when an interrupt is delivered, or when user
input will be processed

* Values read from system clock, or other kinds of operating
system managed resources (like process status data, CPU
load, etc)

* If multiple messages arrive on multiple input sockets, the
order in which they will be seen by the process

* When the garbage collector happens to run

* “Constants” like my IP address, or port numbers assigned
to my sockets by the operating system



PAen-determinisnrexpia
Heisenbug problems

* Many Heisenbugs are just vanilla bugs, but
e They occur early in the execution
e And they damage some data structure

* The application won'’t touch that structure until much
later, when some non-deterministic thing happens
* But then it will crash
e So the crash symptoms vary from run to run

e People on the “sustaining support” team tend to try and
fix the symptoms and often won't understand code well
enough to understand the true cause



P ———

(Sidebar) Life of a program

* Coded by a wizard who really understood the logic

e But she moved to other projects before finishing
e Handed off to Q/A

* Q/A did a reasonable job, but worked with inadequate
test suite so coverage was spotty
e For example, never tested clocks that move backwards

in time, or TCP connections that break when both ends
are actually still healthy

¢ In field, such events DO occur, but attempts to fix
them just added complexity and more bugs!



P

Overcoming non-determinism

* One option: disallow non-determinism
e This is what Lamport did, and what CORBA does too
e But how realistic is it?

e Worry: what if something you use “encapsulates” a non-
deterministic behavior, unbeknownst to you?

e Modern development styles: big applications created
from black box components with agreed interfaces

« We lack a “test” for determinism!



P————

Overcoming non-determinism

* Another option: each time something non-
deterministic is about to happen, turn it into an event

* For example, suppose that we want to read the system
clock
e If we simply read it, every replica gets different result

e But if we read one clock and replicate the value, they see
the same result

¢ Trickier: how about thread scheduling?

e With multicore hardware, the machine itself isn'’t
deterministic!



P

More issues

* For input from the network, or devices, we need some
kind of relay mechanism

e Something that reads the network, or the device
e Then passes the events to the group of replicas

* The relay mechanism itself won't be fault-tolerant:
should this worry us?

e For example, if we want to relay something typed by a
user, it starts at a single place (his keyboard)



P———

Implementing event replication

* One option is to use a protocol like the Oracle protocol
used in our GMS

e This would be tolerant of crash failures and network

faults

e The Oracle is basically an example of a State Machine

e Performance should be ok, but will limited by RTT
between the replicas



P————

Byzantine Agreement

* Lamport’s focus: applications that are compromised by
an attacker

e Like a virus: the attacker somehow “takes over” one of
the copies

e His goal: ensure that the group of replicas can make
progress even if some limited number of replicas fail in
arbitrary ways - they can lie, cheat, steal...

e This entails building what is called a “Byzantine
Broadcast Primitive” and then using it to deliver events



P ———

Questions to ask

* When would Byzantine State Replication be desired?

* How costly does it need to be?
e Lamport’s protocol was pretty costly

e Modern protocols are much faster but remain quite
expensive when compared with the cheapest alternatives

* Are we solving the right problem?
e Gets back to issues of determinism and “relaying” events

e Both seem like very difficult restrictions to accept
without question - later, we'll see that we don'’t even
need to do so



P ———

Another question

* Suppose that we take n replicas and they give us an
extremely reliable state machine

e It won't be faster than 1 copy because the replicas behave
identically (in fact, it will be slower)

e But perhaps we can have 1 replica back up n-1 others?

e Or we might even have everyone do 1/n’th of the work
and also back up someone else, so that we get n times
the performance

e In modern cloud computing systems, performance and
scalability are usually more important than tolerating
insider attacks



expressed with a state machine

* Core role of the state machine: put events into some
order

e Events come in concurrently
e The replicas apply the events in an agreed order
* So the natural match is with order-based functions
e Locking: lock requests / lock grants
e Parameter values and system configuration

e Membership information (as in the Oracle)

* Generalizes to a notion of “role delegation”



P ———

Core functionality

* Anything that can be expressed in terms of an event
that gets “applied” to the state and causes a new state

e Locking: events are lock requests/release
e Parameter changes: events are new values
e Membership changes: events are join/failure

e Security actions: events change permissions, create new
actors or withdraw existing roles

e DNS: events change <name><ip> mappings

* In fact the list is very long. Reminds us of “active
directory” or “dynamic DNS” (aka “Network Info Svc”)



Fancier uses

* Castro and Liskov use a state machine to “manage”
files actually stored in an offline store

e They call this Practical Byzantine Replication

* The state machine tracks which copies are current and
who has them: a small amount of meta-data

e And they use Byzantine Agreement for this

* The actual file contents are not passed through the
state machine, so it isn’'t on the critical path



P

Role Delegation

* New concept for a very sophisticated way of thinking
about state machine replication

e Starts with our GMS perspective of state machine as an
append-oriented log

* Then (like we did) treats this as a set of logs, and then
as a set of logs spread over a hierarchy of state
machines



P

Role Delegation

* Now think about this scenario:
e Initially, the “lock” for the printer resided at the root
e Then we moved it to cs.cornell.edu
e Later we added a sub-lock for the printer cartridge

* Notice similarity to human concept of handing a role
to a person:

e John, you'll be in charge of the printer

 [John]: OK, then Sally, I want you to handle the color ink
levels in the cartridge



P

Role Delegation

* We can formalize this concept of role delegation
* Won't do so in cs5410

* Basic outline
e Think of the log as a “variable”

e Work with pairs: one has values and one tracks the
owner of the log. Appending to the ownership log lets
us transfer ownership to someone else

e Think of decisions as functions that are computed over
these variables



P

Role Delegation

¢ In this way of thinking, we can understand our GMS as
a big role delegation and decision-making tool

* It can handle any decision that occurs in a state
machine where all the needed variables are local

* But it can’t handle decisions that require “one shot”
access to variables split over multiple GMS services



P———

Example?

* Suppose the FBI handles all issues relating ents.
Mulder and Scully work at the FBI |

Cornell handles all issues
= relating to campus access

* After reading a Daily Sun article (“Zombies Kill Six
Near Bell Tower”), Mulder and Scully leap on a plane




Humans vs Zombies

HUMANSVSZOMBIES::SOURCE

i

4

WHAT IS HVZ? GURRENT HVZ GAMES:



A Our State Machine Challenge

* Should Cornell give Mulder access to student records?

* Think of this as a computer science question...



P

Grant Access?

* Issue is a multi-part decision
e Are Mulder and Scully legitimate FBI agents?
e Is this a real investigation?

e What are Cornell policies for FBI access to student
records?

e Are those policies “superceded” by the Zombie
outbreak?

* Very likely decision requires multiple sub-decisions,
some by FBI.gov and some by Cornell.edu, in their
respective GMS services!



P

Options

* Break decision into parts

e Issue: what if outcome leaves some form of changed
state behind (a side-effect)

e Until we know the set of outcomes, we don’t know if we
should update the state

* Collect data at one place

e But where? FBI won't transfer all its data to Cornell, nor
will Cornell transfer data to FBI!



P

Can’t always solve such problems

* If a decision splits nicely into separate ones, sure...
¢ ... but many don't

* If a decision requires one-shot access to everything in
one place, we need a kind of database transaction
e Allows atomicity for multi-operation actions

e Would need to add these functions to our GMS and
doing so isn't trivial



P

Performance worries

* Last in our series of “yes, but” warnings

® Recall that with a GMS, we send certain kinds of
decisions to the GMS and it reports results back

* This means that decision making is “remote”
e May sound minor, but has surprisingly big costs
e Especially big issue if load becomes high



P————

Summary

* State machine concept is very powerful

® But it has limits, too
e Requires determinism, which many applications lack
 Can split application (GMS) up using role delegation,
but functions need to be disjoint
* Scalability

e If one action sometimes requires sub-actions by
multiple GMS role holders, we would need transactions

e But due to indirection, and nature of protocol, state
machines are also fairly slow



