Building a System
Management Service

Ken Birman

Cornell University. CS5410 Fall 2008.

Monday: Designhed an Oracle

* We used a state machine protocol to maintain
consensus on events

e Structured the resulting system as a tree in which each
node is a group of replicas
* Results in a very general management service

e One role of which is to manage membership when an
application needs replicated data

e Today continue to flesh out this idea of a group
communication abstraction in support of replication

Here, three replicas cooperate to implement the GMS as a fault-tolerant
state machine. Each client platform binds to some representative, then
rebinds to a different replica if that one later crashes....

e Each “owns” a subset of

the logs
vy _
™
(N

o

D
g

T

(1) Send events to
the Oracle.

(2) Appended to appropriate log.

3) Reported ‘ mn,&

B

D=
st

P————

Use scenario

* Application A wants to connect with B via “consistent
TCP”

e A and B register with the Oracle - each has an event
channel of its own, like
/status/biscuit.cs.cornell.edu/pid=12421

e Each subscribes to the channel of the other (if
connection breaks, just reconnect to some other Oracle
member and ask it to resume where the old one left off)

e They break the TCP connections if (and only if) the
Oracle tells them to do so.

Use scenario

* For locking
e Lock is “named” by a path
e /x/y/z...
e Send “lock request” and “unlock” messages

e Everyone sees the same sequence of lock, unlock
messages... so everyone knows who has the lock

* Garbage collection?
e Truncate prefix after lock is granted

P———

Use scenario

* For tracking group membership
e Group is “named” by a path
e /x/y/z...
e Send “join request” and “leave” messages
e Report failures as “forced leave”

e Everyone sees the same sequence of join, leave
messages... So everyone knows the group view

* Garbage collection?
e Truncate old view-related events

P ———

A primitive “pub/sub” system

* The Oracle is very simple but quite powerful

e Everyone sees what appears to be a single, highly available
source of reliable “events”

e XML strings can encode all sorts of event data
e Library interfaces customize to offer various abstractions

* Too slow for high-rate events (although the Spread system
works that way%

* But think of the Oracle as a bootstrapping tool that helps
the groups implement their own direct, peer-to-peer
protocols in a nicer world that if they didn’t have it.

P

Building group multicast

* Any group can use the Oracle to track membership

* Enabling reliable multicast!

LR Y AR W.

* Protocol: Unreliable multicast to current members. ACK/NAK
to ensure that all of them receive it

P

Concerns if sender crashes

* Perhaps it sent some message and only one process has
seen it

* We would prefer to ensure that
e All receivers, in “current view”

» Receive any messages that any receiver receives (unless
the sender and all receivers crash, erasing evidence...)

P———

An interrupted multicast
Y :
1 VA . :

* A message from g to r was “dropped”

* Since q has crashed, it won'’t be resent

Flush protocol

* We say that a message is unstable if some receiver has
it but (perhaps) others don'’t

e For example, g's message is unstable at process r

* If q fails we want to “flush” unstable messages out of
the system

P

How to do this?

* Easy solution: all-to-all echo
e When a new view is reported

e All processes echo any unstable messages on all
channels on which they haven'’t received a copy of those
messages

* A flurry of O(n?) messages

* Note: must do this for all messages, not just those
from the failed process. This is because more
failures could happen in future

P———

An interrupted multicast
Y |
1 VA . :

* p had an unstable message, so it echoed it when it saw
the new view

P————

Event ordering

* We should first deliver the multicasts to the
application layer and then report the new view

* This way all replicas see the same messages delivered
“in” the same view

e Some call this “view synchrony”

4 ‘/\/‘.\ '
q MY .

State transfer

* At the instant the new view is reported, a process
already in the group makes a checkpoint

* Sends point-to-point to new member(s)
e It (they) initialize from the checkpoint

P ———

State transfer and reliable multicast

0 :
. 0 \ N[\/
AL . |
S / >
* After re-ordering, it looks like each multicast is reliably
delivered in the same view at each receiver

* Note: if sender and all receivers fails, unstable message can
be “erased” even after delivery to an application

e This is a price we pay to gain higher speed

P ———

State transfer

* New view initiated, it adds a process
* We run the flush protocol, but as it ends...
* ... some existing process creates a checkpoint of group

e Only state specific to the group, not ALL of its state

e Keep in mind that one application might be in many
groups at the same time, each with its own state

* Transfer this checkpoint to joining member

e It loads it to initialize the state of its instance of the
group - that object. One state transfer per group.

P

Ordering: The missing element

® Qur fault-tolerant protocol was

e FIFO ordered: messages from a single sender are
delivered in the order they were sent, even if someone
crashes

e View synchronous: everyone receives a given message in
the same group view

* This is the protocol we called fbcast

Other options

* cbcast: If cbcast(a)—>cbcast(b), deliver a before b at
common destinations

* abcast: Even if a and b are concurrent, deliver in
some agreed order at common destinations

* gbcast: Deliver this message like a new group view:
agreed order w.r.t. multicasts of all other flavors

Single updater

e If p is the only update source, the need is a bit like the
TCP “fifo” ordering

. ' > (@
X\ '~ \

| - N\

! Y \

* fbcast is a good choice for this case

-~ »n = g

\V

‘ Causally ordered updates

e Events occur on a “causal thread” but multicasts have
different senders

A o)
T T A//Q\
- \é// L l// W
- < \
() ()

Causally ordered updates

e Events occur on a “causal thread” but multicasts have

differer

Perhaps| Now were bal T gets another request. This one came
remote| p. Theremo| from p “indirectly” vias... but the idea is

inl The T finishes €Xactly the same. P isreally running a

{ thq operation invo] single causal thread that weaves through

doif response tothq the system, visiting various objects (and

S OO hence the processes that own them)

v

+~ »n = g
L
>

e, e T
W\\\M/ S

0 ()

v

P

How to implement it?

* Within a single group, the easiest option is to include a
vector timestamp in the header of the message

e Array of counters, one per group member
e Increment your personal counter when sending

 iSend these “labeled” messages with fbcast

* Delay a received message if a causally prior message
hasn't been seen yet

Causally ordered updates

* Example: messages from p and s arrive out of order at t

VT(b)=[1,0,0,1]
A cis early: VT(c) = [1,0,1,1] but
p \0is o/ PR N SRS TIDR D, BN
r \ W / / When b arrives, we can deliver both
. \ / / \, %_ it and message c, in order
¢ R v \

P———

Causally ordered updates

* This works even with multiple causal threads.

\\//\,\\‘(% \\
V// /\

. Concurrent messages mlghtge dehvered to
different receivers in different orders

e Example: green 4 and red 1 are concurrent

“ o =

A\

Causally ordered updates

* Sorting based on Vector timestamp

Avvnae e lsatla s [2,1,1,3]

r \\///&\i\\ <f//‘\
: V/ \//\ \

t \V/
[1,0,1,1] [1,1,1,3]

° In thlS run, everything can be dehvered immediately
on arrival

——,

Causally ordered updates

» Suppose p’s message [1,0,0,1] is “delayed”

wn o= g

/

<\

\

/
/

/
\\.
T
<
—>
%

| Ui X

* When t receives message [1,0,1,1], t can “see” that one
message from p is late and can delay deliver of s’s
message until p’s prior message arrives!

P

Other uses for cbcast?

* The protocol is very helpful in systems that use locking
for synchronization

e Gaining a lock gives some process mutual exclusion

e Then it can send updates to the locked variable or
replicated data

* Cbcast will maintain the update order

e
E——

A

——,
————

Causally ordered updates

* A bursty application

Can pack into one large
message and amortize
overheads

] @7/ \\\\\\
\ NA\VAVEN
N

+~ »n = g
L

P

Other forms of ordering

* Abcast (total or “atomic” ordering)
e Basically, our locking protocol solved this problem

e Can also do it with fbcast by having a token-holder send
out ordering to use

® Gbcast

e Provides applications with access to the same protocol
used when extending the group view

 Basically, identical to “Paxos” with a leader

P

Algorithms that use multicast

* Locked access to shared data
e Multicast updates, read any local copy
e This is very efficient... 100k updates/second not unusual

* Parallel search

* Fault-tolerance (primary/backup, coordinator-cohort)
* Publish/subscribe

* Shared “work to do” tuples

* Secure replicated keys

* Coordinated actions that require a leader

P

Modern high visibility examples

* Google’s Chubby service (uses Paxos == gbcast)
* Yahoo! Zookeeper

* Microsoft cluster management technology for
Windows Enterprise clusters

* IBM DCS platform and Websphere

* Basically: stuff like this is all around us, although often
hidden inside some other kind of system

Summary

e Last week we looked at two notions of time
 Logical time is more relevant here

e Notice the similarity between delivery of an ordered
multicast and computing something on a consistent cut

* We're starting to think of “consistency” and
“replication” in terms of events that occur along time-
ordered event histories

e The GMS (Oracle) tracks “management” events

e The group communication system supports much
higher data rate replication

