Building a System
Management Service

Ken Birman

Cornell University. CS5410 Fall 2008.

P

Last week looked at time

¢ In effect, we asked “can we build a time service for a
data center”?

e Reached two conclusions
e One focused on event ordering
e The other was a true synchronized clock

* This week, we’ll use some of the ideas from the time
service to build a powerful system management service

Hear and obey.
The primary is
down. I have

O racC I o _ spoken!!!

An all-seeing eye. ¥
®, .

* Clients obey it

o If the oracle errs
we “do as it says” anyhow

¢ This eliminated our \
fear of inconsistency.

A~
R

E ihg the Oracle to manage a

system

* For many purposes, Oracle can “publish decrees”

e “Failure” and “Recovery” don't need to be the only cases
* For example

e “Engines at warp-factor two!”

e “Reject non-priority requests”

e “Map biscuit.cs.cornell.edu to 128.57.43.1241”

P failed u

J-

* Imagine this as an append-only log

P

Using the Oracle to manage a system

* If we give the records “names” (like file paths) we can
treat the log as a set of logs

e /process-status/biscuit.cs.cornell.edu/pidi2345
e /parameters/peoplesoft/run-slow=true
 /locks/printqueue

* Thus one log can “look” like many logs
e Clients append to logs
e And they also “subscribe” to see reports as changes occur

P

Many roles for Oracles

* Track membership of a complex system
e Which applications are up? Which are down?
e Where are service instances running? (“GMS” function)

e Use it as “input” for group applications, TCP failure
sensing, load-balancing, etc.

* Lock management

* Parameter and status tracking
* Assignment of roles, keys

* DNS functionality

Scalability

* Clearly, not everything can run through one server

e It won't be fast enough

e Solutions?

e Only use the Oracle “when necessary” (will see more on
this later)

e Spread the role over multiple servers
» One Oracle “node” could be handled by, say, three servers

« And we could also structure the nodes as a hierarchy, with
different parts of our log owned by different nodes

e Requires “consensus” on log append operations

P

Consensus problem

* A classic (and well understood) distributed computing
problem, arises in a few variant forms (agreement,
atomic broadcast, leader election, locking)

* Core question:
e A set of processes have inputs v, € {0,1}
 Protocol is started (by some sort of trigger)
e Objective: all decide v, for some v in the input set
e Example solution: “vote” and take the majority value

P————

Consensus with failures

* The so-called FLP (Fischer, Lynch and Patterson)
result proves that any consensus protocol capable of
tolerating even a single failure must have non-
terminating runs (in which no decision is reached)

* Prootf is for an asynchronous execution; flavor similar
to that of the pumping lemma in language theory

* Caveat: the run in question is of probability zero

P———

Aside: FLP Proof

® The actual proof isn’t particularly intuitive

e They show that any fault-tolerant consensus protocol
has infinite runs that consist of purely bivalent states

* The intuition is that delayed messages can force a
consensus protocol to “reconfigure”

e The implicit issue is that consensus requires a unique
leader to reaches the decision on behalf of the system.

e FLP forces repeated transient message delays

e These isolate the leader, forcing selection of a new
leader, and thus delaying the decision indefinitely

P ———

Aside: “Impossibility”

* A perhaps-surprising insight is that for theory
community, “impossible” doesn’t mean “can’t be done”

e In normal language, an impossible thing can never be
done. It is impossible for a person to fly (except on TV)

e In the formal definitions used for FLP, impossible means
can’t always be done. If there is even one run in which
decisions aren’t reached, it is “impossible” to decide.

e In fact, as a practical matter, consensus can always be
reached as long as a majority of our system is operational

E nsensus is imposséie.

But why do we care?

* The core issue is that so many problems are equivalent
to consensus

e Basically, any consistent behavior

* FLP makes it hard to be rigorous about correctness
e We can prove partial but not total correctness

e For the theory community, this is frustrating - it is
“impossible” to solve consensus or equivalent problems

e At best we talk about progress in models with Oracles

P ———

Consensus-like behavior

* We'll require that our log behave in a manner
indistinguishable from a non-replicated, non-faulty
single instance running on some accessible server

* But we'll implement the log using a group of
components that run a simple state-machine append
protocol

e This abstraction matches the “Paxos” protocol

e But the protocol we’ll look at is older and was developed
in the Isis system for “group view management”

P———

Group communication

* We want the Oracle itself to be a tree, nodes of which
are groups of servers

* In fact we can generalize this concept
e The general version is a group of processes
e ...supported by some form of management service

¢ Turtles all the way down, again?
e At the core we’ll have a “root” group

P

Group Communication illustration
L
AT
RN S
t u i Z

. TerminologY: group create, view, join with state transfer,
multicast, client-to-group communication

* “Dynamic” membership model: processes come & go

g Cipe for a group communication

system

* Back one pie shell

e Build a service that can track group membership and
report “view changes” (our Oracle)

* Prepare 2 cups of basic pie filling
e Develop a simple fault-tolerant multicast protocol
* Add flavoring of your choice

e Extend the multicast protocol to provide desired delivery
ordering guarantees

» Fill pie shell, chill, and serve

e Design an end-user ‘API” or “toolkit” Clients will “serve
themselves’, with various goals...

P

Role of GMS

* We'll add a new system service to our distributed
system, like the Internet DNS but with a new role

e Itsjob is to track membership of groups
 To join a group a process will ask the GMS

e The GMS will also monitor members and can use this to
drop them from a group

e And it will report membership changes

Group picture... with GMS

T to GMS: What is
current membership
for group X?

P requ

q to joi

R

," ‘ Q joins, now X = {p,q}. Sincel;

GMS to 1S the oldest prior member, it
-

B I does a state transfer to q
-ll' 1

.
.
.
'~.
‘~_
‘~.
A

GMS notices that q

s failed (or q
ides to leave)

P

Group membership service

* Runs on some sensible place, like the server
hosting your DNS

* Takes as input:
e Process “join” events
e Process “leave” events
e Apparent failures

* Output:

e Membership views for group(s) to which those processes
belong

e Seen by the protocol “library” that the group members
are using for communication support

Issues?

* The service itself needs to be fault-tolerant

e Otherwise our entire system could be crippled by a
single failure!

* Sowe'll run two or three copies of it

e Hence Group Membership Service (GMS) must run
some form of protocol (GMP)

e
E——

A

——,
————

Group picture... with GMS

& =
| /\” d\\/ﬂ/i

GMS

W Let’s start by focusing on how GMS tracks its
own membershin. Since it can’t iust ask the
The GMS is a group too. We'll build it first and >ecial

then will use it when building reliable he GMS
multicast protocols. ither

AAQ TITICT TAIV MM TNA IXIVIN TN N thiS jOb

.1 end up using those reliable
. protocols to replicate membership
«mation for other groups that rely on it

W Let’s start by focusing on how GMS tracks its
own membershin. Since it can’t iust ask the
The GMS is a group too. We'll build it first and >ecial

then will use it when building reliable he GMS
multicast protocols. ither

AAQ TITICT TAIV MM TNA IXIVIN TN N thiS jOb

.1 end up using those reliable
. protocols to replicate membership
«mation for other groups that rely on it

P

Approach

* We'll assume that GMS has members {p,q,r} at time t

* Designate the “oldest” of these as the protocol “leader”

e To initiate a change in GMS membership, leader will run
the GMP

e Others can't run the GMP; they report events to the
leader

* Example:
e Initially, GMS consists of {p,q,r}
e Then q is believed to have crashed

Failure detection: may make mistakes

* Recall that failures are hard to distinguish from
network delay

e So we accept risk of mistake

e If p is running a protocol to exclude q because “q has
failed”, all processes that hear from p will cut channels to

q

 Avoids “messages from the dead”

e g must rejoin to participate in GMS again

Basic GMP

» Someone reports that “q has failed”

* Leader (process p) runs a 2-phase commit protocol

e Announces a “proposed new GMS view”

» Excludes q, or might add some members who are joining, or
could do both at once

e Waits until a majority of members of current view have
voted “ok”

e Then commits the change

P———

GMP example
M Proposed V, = {p,r} Comm\.
Vo =1p,qr} = {p.1}

* Proposes new view: {p,r} -q]

* Needs majority consent: p itself, plus one more
(“current” view had 3 members)

® Can add members at the same time

Special concerns?

* What if someone doesn’t respond?

e P can tolerate failures of a minority of members of the
current view

» New first-round “overlaps” its commit:
- “Commit that g has left. Propose add s and drop r”
e P must wait if it can’t contact a majority

» Avoids risk of partitioning

W What if leader fails?

* Here we do a 3-phase protocol

* New leader identifies itself based on age ranking (oldest
surviving process)

e It runs an inquiry phase
« “The adored leader has died. Did he say anything to you before
passing away?”
« Note that this causes participants to cut connections to the
adored previous leader
e Then run normal 2-phase protocol but “terminate” any
interrupted view changes leader had initiated

GMP example

S |

q Inquire [-p] Proposed V, = {r,s} Commit V,
OK: nothing was pending OK
V., ={p,q,r} = {r,s}

* New leader first sends an inquiry
* Then proposes new view: {r,s} [-p]

* Needs majority consent: q itself, plus one more
(“current” view had 3 members)

* Again, can add members at the same time

P

Turning the GMS into the Oracle

* Build a tree of GMS servers
e Each node will be a small replicated state machine

* In addition to the group view, members maintain a set
of replicated logs

e Log has a name (like a file pathname)

e View change protocol used to extend the log with new
events

 Various “libraries” allow us to present the service in the
forms we have in mind: locking, load-balancing, etc

Here, three replicas cooperate to implement the GMS as a fault-tolerant
state machine. Each client platform binds to some representative, then
rebinds to a different replica if that one later crashes....

This part of the Oracle

owns all events relating to
INRIA/IRISA

V,={p.qr}

This part of the Oracle
owns all events relating to
Cornell University

Turning the GMS into the Oracle

(1) Send events to
the Oracle.

(2) Appended to log.

3) Reported

_

i

\}
]

P

[y, ¢

2o \

N~

-

|
|

P ———

Summary

* We're part way down the road to a universal
management service

e We know how to build the core Oracle and replicate it

e We can organize the replica groups as a tree, and split
the roles among nodes (each log has an “owner”

e The general class of solutions gives us group
communication supported by a management layer

* Next lecture: we'll finish the group communication
subsystem and use it to support service replication

