Real Time and Clocks

Ken Birman

Cornell University. CS5410 Fall 2008.

P———

Real time and clocks

* Lamport showed that if we care about event ordering,
the best option is to use logical clocks
* But suppose we care about real time?
e How well can clocks be synchronized?

e To what extent can the operating system help us build
applications that are sensitive to time?

Introducing “wall clock time”

* There are several options
e “Extend” a logical clock or vector clock with the clock
time and use it to break ties

» Makes meaningful statements like “B and D were concurrent,
although B occurred first”

 But unless clocks are closely synchronized such statements
could be erroneous!
e We use a clock synchronization algorithm to reconcile
differences between clocks on various computers in the
network

P

Synchronizing clocks

* Without help, clocks will often differ by many
milliseconds

e Problem is that when a machine downloads time from a
network clock it can’t be sure what the delay was

e This is because the “uplink” and “downlink” delays are
often very different in a network

* Qutright failures of clocks are rare...

P

.

What time is it?

09:23.02921

|

* Suppose p synchronizes with time.windows.com and notes that 123 ms elapsed
while the protocol was running... what time is it now?

time.windows.com ==

v

P

Synchronizing clocks

* Options?
e P could guess that the delay was evenly split, but this is
rarely the case in WAN settings (downlink speeds are

higher)
e P could ignore the delay
e P could factor in only “known” delay

« For example, suppose the link takes at least 25ms in each
direction...

Synchronizing clocks

25ms 25ms

“---->» “«---->»

| Delay: 123ms '

\ 09:23.02921

* Suppose p synchronizes with time.windows.com and notes that 123 ms elapsed
while the protocol was running... what time is it now?

A 4

time.windows.com ==

v

P

Synchronizing clocks

* In general can’t do better than uncertainty in the link
delay from the time source down to p

e Take the measured delay
e Subtract the “certain” component
e We are left with the uncertainty

* Actual time can’t get more accurate than this
uncertainty!

What about GPS?

* GPS has a network of satellites that send out the time,
with microsecond precision

* Each radio receiver captures several signals and
compares the time of arrival

* This allows them to triangulate to determine position

GPS Triangulation ﬂg‘::.\
i e

P

Issues in GPS triangulation

* Depends on very accurate model of satellite position

e In practice, variations in gravity cause satellite to move
while in orbit

* Assumes signal was received “directly”
e Urban “canyons” with reflection an issue

* DOD encrypts low-order bits

P

GPS as a time source

* Need to estimate time for signals to transit
through the atmosphere

e This isn’t hard because the orbit of the satellites is well
known

e Must correct for issues such as those just mentioned
* Accurate to +/- 25ms without corrections

* Can achieve +/1 1us accuracy with correction
algorithm, if enough satellites are visible

P

Consequences?

* With a cheap GPS receiver, 25ms accuracy, which is
large compared to time for exchanging messages
* 10,000 msgs/second on modern platforms
e ... hence .1ms “data rates”

e Moreover, clocks on cheap machines have 10ms accuracy

* But with expensive GPS, we could timestamp as
many as 100,000 msgs/second

Accuracy and Precision

* Accuracy is a measure of how close a clock is to “true”
time

® Precision is a measure of how close a set of clocks are
to one-another

e Both are often expressed in terms of a window and a
drift rate

P ———

Thought question

e We are building an anti-missile system

dar tells the interceptor where it should be and what
e to get there

we want the radar and interceptor to be as accurate
as possible, or as precise as possible?

Thought question

* We want them to agree on the time but it isn't
important whether they are accurate with respect to
“true” time

e “Precision” matters more than “accuracy”

e Although for this, a GPS time source would be the way to
go

« Might achieve higher precision than we can with an “internal”
synchronization protocol!

P———

Real systems?

* Typically, some “master clock” owner periodically
broadcasts the time
* Processes then update their clocks
e But they can drift between updates

e Hence we generally treat time as having fairly low
accuracy

e Often precision will be poor compared to message
round-trip times

Clock synchronization

* To optimize for precision we can

e Set all clocks from a GPS source or some other time
“broadcast” source

« Limited by uncertainty in downlink times

e Or run a protocol between the machines
« Many have been reported in the literature
 Precision limited by uncertainty in message delays

« Some can even overcome arbitrary failures in a subset of the
machines!

Adjusting clocks: Not easy!

* Suppose the current time is 10:00.00pm

e Now we discover we're wrong
e It’s actually 9:59.57pm!
* Options:
e Set the clock back by 3 seconds...

« But what will this do to timers?
 Implies a need for a “global time warp”

e Introduce an artificial time drift

« E.g. make clock run slowly for a little while

P———

Real systems

* Many adjust time “abruptly”

e Time could seem to freeze for a while, until the clock is
accurate (e.g. if it was fast)

e Or might jump backwards or forwards with no warning
to applications

* This causes many real systems to use relative time:
« »
now + XYZ

e But measuring relative time is hard

——,
e

Some advantages of real time

* Instant common knowledge

e “At noon, switch from warmup mode to operational
mode”

e No messages are needed

e Action can be more accurate that would be possible (due
to speed of light) with message agreement protocols!

Some advantages of real time

® The outside world cares about time
e Aircraft attitude control is a “real time” process

e People and cars and planes move at speeds that are
measured in time

e Physical processes often involve coordinated actions in
time

P

Disadvantages of real time

* On Monday, we saw that causal time is a better way
to understand event relationships in actual
systems

e Real time can be deceptive
e Causality can be tracked... and is closer to what really
mattered!

* For example, a causal snapshot is “safe” but an
instantaneous one might be confusing

P

Internal uses of time

* Most systems use time for expiration

e Security credentials are only valid for a limited period,
then keys are updated

e [P addresses are “leased” and must be refreshed before
they time out

e DNS entries have a TTL value

e Many file systems use time to figure out whether one file
is fresher than another

——,
e

The “endless rebuild problem”

* Suppose you run Make on a system that has a clock
running slow

e File xyz is “older” than xyz.cs, so we recompile xyz...
e ... creating a new file, which we timestamp

e ...and store

* The new one may STILL be “older” than xyz.cs!

Implications?

* In a robust distributed system, we may need
trustworthy sources of time!

e Time services that can’t be corrupted and won'’t run slow
or fast

e Synchronization that really works

e Algorithms that wont malfunction if clocks are off by
some limited amount

Fault-tolerant clock sync

* Assume that we have 5 machines with GPS units

* Each senses the time independently

* Challenge: how to achieve optimal precision and
accuracy?

P

Srikanth and Toueg

* You can’t achieve both at once

e To achieve the best precision you lose some accuracy,
and vice versa

* Problem is ultimately similar to Byzantine Agreement
e We looked at this once, assuming signatures
e Similar approach can be used for clocks

Combining “sensor” inputs

True time

L1 I >
Kl »

(L

1 (] 1 »

® »

I i

e “Shout at 10:00.00”

P

Combining “sensor” inputs

* Basic approach

e Assume that no more than k out of n fail

« Depending on assumptions, k is usually bounded to be less
than n/3

e Discard outliers
e Take mean of resulting values

* Attacking such a clock?
e Try and be “as far away as possible” without getting

discarded

How do real clocks fail?

e Bits can stick

e This gives clocks that “jump around”
* The whole clock can get stuck, perhaps erratically

* Clock can miscount and hence drift (backwards)
rapidly

P ———

Using real-time

* Consider using a real-time operating system, clock
synchronization algorithm, and to design
protocols that exploit time

* Example: MARS system uses pairs of redundant
processors to perform actions fault-tolerantly and
meet deadlines. Has been applied in process
control systems. (Another example: Delta-4)

Using time with sensors

* Many distributed systems monitor something in the
outside world

e They use “sensors” to capture data such as temperature,
video images, etc. Often data comes with build-in
precision limits

e Then label these with time

* We've seen that time comes with imprecision too

* How does this impact applications that “sense” things?

Time with sensors

* Suppose that an application tracks temperature in
Ithaca

e At10:00am, 52 degree F
e At noon, 68 degrees F

e At 2:00pm, 74 degrees F
e At 6:00 pm 58 degrees F

* And temperature is +/- 2 degrees

Temperatures

90
80
70
60
50
40
30
20
10

o

10aIm

12pm

2pm

4pm

High

Low

- Sensed value

P

Do we really know the value?

* The 12pm value was really within a “bounding box”

e The value was between, say, 63 and 67 with a “best
estimate” of 65

e But the time was also in a range of possible times

« Perhaps, between 11:59 and 12:01

* So we should think of the sensor value as a box

value

time

Does this matter?

* Suppose that we are supposed to only activate the
assembly line once all the furnaces have reached
operating temperature

* Or vent the reactor vessel if the pressure goes over 100
Ibs per square inch

* How would we translate these rules to work with
sensors that return values in “boxes”?

“Maybe” versus “Definitely”

® Suppose a sensor returns fp=—-~L—Ratan:aa . [10 secCs

Actual temperature
could be anywhere inside
the bounding box

// il
S //
h\
~
~
N
A

o 68

67

el 66

: 9:58 9:39 10:00 10:01 10:0“2 -
* Was it definitely 68 degrees? Or just “maybe”?

P

Wood and Marzullo

* Looked at issues of clock and sensor synchronization

* Developed fault-tolerance mechanisms for estimating
data values and synchronizing clocks

* Showed how to deal with imprecision
* You needed to tell them which behavior you wanted

e Then they interpreted the question relative to the
“bounding box” for the sensor

Overcoming errors

¢ If we have n readings and at most k are faulty, intersect

boxes (excluding all possil ifat most 1 of 5 is faulty,

the value must lie in the
red intei '

This sensor must have
i
/ failed, or perhaps the

. % associated clock is faulty.
! 4

V4 g /{
-/ — s 4
N y 4
/ N /

9:58 9:59 10:00 10:01 10:02

P

Back to our questions

® Only activate the assembly line once all the furnaces
have |definitely] reached operating temperature

e We want to know that the temperature is definitely high
enough. Entire bounding box must be above the
threshold temperature to be safe, since any point in the
box is a “possibility” for the current temperature

» Vent the reactor vessel if the pressure [may be] over 100
Ibs per square inch

e Trigger vent if any portion of the box is over threshold,
because (perhaps) the vessel has reached that pressure.

P

Other issues to consider

* Source of imprecision is often the operating system
e Scheduling delays
e Paging
e Contention for resources (locking)

* To overcome these problems it can be helpful to use a
real time operating system in addition to using clock
synchronization or sensor synchronization protocols

* By reducing uncertainty these “shrink the box”

P ———

Summary

* On Monday we saw that events in a system are best
understood in terms of the logical progression of time

* Now we’ve looked at real (clock) time, which is one
form of sensor, and also other kinds of sensor inputs

* Imprecise measurements force us to think in terms of
bounding boxes with values in the box
e We can use this to overcome errors

e And we can also intepret queries over sensors and time
in ways that explicitly cope with imprecision

