Logical Time and Clocks

Ken Birman

Cornell University. CS5410 Fall 2008.

P ———

Recall cloud “layers”

* Highest level consists of applications

* These are composed from services that run on data
harvested by applications using tools Map-Reduce

* The overall system is managed by a collection of core
infrastructure services, such as locking and node
status tracking

* How can we “reason” about the behavior of such
components?

e The scale and complexity makes it seem hard to say
more than “Here’s a service. This is what it does”

P

But we can do more

* We can describe distributed systems in more rigorous
ways that let us say stronger things about them

* The trick is to start at the bottom, not the top

* This week: we'll focus on concepts of time as they arise
in distributed systems

What time is it?

¢ In distributed system we need practical ways to deal
with time

e E.g. we may need to agree that update A occurred before
update B

e Or offer a “lease” on a resource that expires at time
10:10.0150

e Or guarantee that a time critical event will reach all
interested parties within 10oms

——,
e

But what does time “mean”?

* Time on a global clock?
e E.g. with GPS receiver
e ...oron a machine’s local clock
e But was it set accurately?
e And could it drift, e.g. run fast or slow?
e What about faults, like stuck bits?

e ...or could try to agree on time

Lamport’s approach

* Leslie Lamport suggested that we should reduce time
to its basics

e Time lets a system ask “Which came first: event A or
event B?”

e In effect: time is a means of labeling events so that...
» If A happened before B, TIME(A) < TIME(B)
» If TIME(A) < TIME(B), A happened before B

e
—

A

. ——
e ———— m—r——

Drawing time-line pictures:

snd,(m)

-

m

q \. D

rcvg(m) delivy(m)

P

——,

Drawing time-line pictures:

snd,(m)

q c \. D

rcvg(m) delivy(m)

* A, B, Cand D are “events’.

e Could be anything meaningful to the application
e So are snd(m) and rcv(m) and deliv(m)

* What ordering claims are meaningful?

g C \. D

rcvg(m) delivy(m)

* A happens before B, and C before D

e “Local ordering” at a single process
L
Write and

q
C->D

Drawing time-line pictures:

snd,(m)

q c \. D

rcvg(m) delivy(m)

* snd,(m) aiso happens before rcv (m)

e “Distributed ordering” introduced by a message
e Write

M
snd (m)—>recv,(m)

Drawing time-line pictures:

snd,(m)

q c \. D

rcvg(m) delivy(m)

* A happens before D

e Transitivity: A happens before snd (m), which happens
before rcv, (m), which happens before D

Drawing time-line pictures:

snd,(m)

q c \. D

deli
e Band Dz :concurrent "™ %Mm

e Looks like B happens first, but D has no way to know.
No information flowed...

Happens before “relation”
* We'll say that “A happens before B”, written A—>B, if

1. A—'B according to the local ordering, or

>. Aisasndand Bisarcvand A—"B, or
3. A and B are related under the transitive closure of rules (1)

and (2)
* So far, this is just a mathematical notation, not a
“systems tool”

Logical clocks

* A simple tool that can capture parts of the happens
before relation
* First version: uses just a single integer
* Designed for big (64-bit or more) counters
* Each process p maintains LT, a local counter
e A message m will carry LT

P———

Rules for managing logical clocks

* When an event happens at a process p it
increments LTp.

e Any event that matters to p

e Normally, also snd and rcv events (since we want receive
to occur “after” the matching send)

* When p sends m, set
e LT, = LT,

* When q receives m, set
e LT, = max(LT,, LT,)+

——,

Time-line with LT annotations

snd,(m)

LT, [O 1 1 2 2 2 2 2 2 3 3 3 3

q C \. P

rcvg(m) delivy(m)

LTy [O 0 0 1 1 1 1 3 3 3 4 5 5

* LT(A) =1, LT(snd (m)) = 2, LT(m) = 2
* LT(rcv,(m))=max(1,2)+1=3, etc...

P

Logical clocks

* If A happens before B, A—B,
then LT(A)<LT(B)

* But converse might not be true:

o If LT(A)<LT(B) can’t be sure that A—>B

e This is because processes that don't communicate still
assign timestamps and hence events will “seem” to have
an order

——,
————

Can we do better?

* One option is to use vector clocks
* Here we treat timestamps as a list
e One counter for each process

* Rules for managing vector times differ from what did
with logical clocks

P————

Vector clocks
* Clock is a vector: e.g. VT(A)=[1, o]

e We'll just assign p index o and q index 1

e Vector clocks require either agreement on the
numbering, or that the actual process id’s be included
with the vector

* Rules for managing vector clock
e When event happens at p, increment VT [index]

« Normally, also increment for snd and rcv events

e When sending a message, set VT(m)=VT,
e When receiving, set VT =max(VT,, VT(m))

Time-line with VT annotations

) snd,(m)

A \ B
vig|o {1 |1 |2 |2 |2 |2 2|2 |3]|3 |3 |3
o |of|o|o]|o|o|o|o]|o]|o|o|o0]oO

5 m

e VT(m)=[2,0]

q /// C D=
e rcvg(m) delivy(m)

7 vigfo o oo oo of2]2|2]2|2]2
oo fo |2 |11 f2]|2]|2]2|3]|3]4

__

Could also be [1,0] if we decide not to increment the clock on a snd
event. Decision depends on how the timestamps will be used.

A

——,
————

Rules for comparison of VTs

* We'll say that VT, < VT if
o V,, VT,[i] = VT4[i]
* And we'll say that VT, < VTj if
e VT, < VT, but VT, # VT,
e That is, for some i, VT,[i] < VTli]
* Examples?
° [2,4] < [2,4]

* [1,3] < [7,3]
e [1,3] is “incomparable” to [3,1]

P———

Time-line with VT annotations

snd,(m)

T B
Vi, |0 |1 (1 |2 |2 |2 (2 |2 |2 |3 (3 (|3]3
oo (0 (O (O (O (O OO (OO OO

\ VT(m)=[2,0]

q C \5 D:

rcvg(m) delivy(m)

VI, 10 [0 [O JO |O [0 (O 2 2 2 2 2 2
0|10 (O 1 1 1 1 2 2 2 |3 |3 |4

 VT(A)=[1,0]. VT(D)=[2,4]. So VT(A)<VT(D)
* VT(B)=[3,0]. So VT(B) and VT (D) are incomparable

P

Vector time and happens before
* [f A>B, then VT(A)<VT(B)

e Write a chain of events from A to B
e Step by step the vector clocks get larger

* If VT(A)<VT(B) then A—>B

e Two cases: if A and B both happen at same process p,
trivial

e If A happens at p and B at g, can trace the path back by
which q “learned” VT, |p]

* Otherwise A and B happened concurrently

P ———

Temporal snapshots

* Suppose that we want to take a photograph of a system
while it executes: our goal is to capture the state of
each node and each channel at some instant in time

* We can see now that the notion of an “instant in time”
is tricky
e For example, if each node writes down its state at logical

time 10000, would this be a “snapshot” that corresponds
to anything an external user would perceive as “time”?

e Clearly not. My logical clock could advance much
faster than yours

P

Temporal distortions

* Things can be complicated because we can’t predict
e Message delays (they vary constantly)

e Execution speeds (often a process shares a machine with
many other tasks)

e Timing of external events

* Lamport looked at this question too

e
E——

A

——,
————

Temporal distortions

* What does “now” mean?

P

Temporal distortions

What does “how” mean?

P ———

Consider...

* The picture we drew represents reality, but

e With the same inputs, perhaps scheduling or contention on
the machines could slow some down, or speed some up

e Messages may be lost and need to be retransmitted, or
might hit congested links

e Or perhaps those problems occurred in the run in the
picture but have gone away now

* In fact a given system might yield MANY pictures of this
sort, depending on “luck’...

P————

Temporal distortions

Timelines can “stretch”...

... caused by scheduling effects,
message delays, message loss...

P

Temporal distortions

Timelines can “shrink”

E.g. something lets a machine speed up

P————

Temporal distortions

Cuts represent instants of time.

But not every “cut’” makes sense
Black cuts could occur but not gray ones.

——,
e

Consistent cuts and snapshots

* Idea is to identify system states that “might” have
occurred in real-life

e Need to avoid capturing states in which a message is
received but nobody is shown as having sent it

e This the problem with the gray cuts

e
E——

A

——,
————

Temporal distortions

Red messages cross gray cuts “backwards’

P

Temporal distortions

Red messages cross gray cuts “backwards”

In a nutshell: the cut includes a
message that “was never sent”

Who cares?

* In our auditing example, we might think some of the
bank’s money is missing

* Or suppose that we want to do distributed deadlock
detection

e System lets processes “wait” for actions by other
processes

e A process can only do one thing at a time
e A deadlock occurs if there is a circular wait

Deadlock detection “algorithm”

* p worries: perhaps we have a deadlock
* p is waiting for q, so sends “what’s your state?”

* g, on receipt, is waiting for r, so sends the same
question... and r fors.... And s is waiting on p.

Suppose we detect this state

* We see a cycle...

P ——— Waitingfor ———»0)
[| Waiting for

o ... but is it a d¢adio M —

P

Phantom deadlocks!

* Suppose system has a very high rate of locking.

* Then perhaps a lock release message “passed” a
query message
* i.e. we see “q waiting for r’ and “r waiting for s” but in
fact, by the time we checked r, ¢ was no longer waiting!
* In effect: we checked for deadlock on a gray cut -
an inconsistent cut.

e solution is to “freeze™
system

Was | speeding?
Ok...

I'll be late! Y

Yessirl B

Sigh...

e solution is to “freeze”
system

Sorry to trouble you, folks. |
just need a status snapshot,
please

e solution is to “freeze™
system

X
Here you go...

No problem

2
A

right to privacy?

One solution is to "freeze™ t
system

P———

Why does it work?

* When we check bank accounts, or check for deadlock,
the system is idle

* So if “P is waiting for Q” and “Q is waiting for R” we
really mean “simultaneously”

* But to get this guarantee we did something very costly
because no new work is being done!

P

Consistent cuts and snapshots

* Goal is to draw a line across the system state such that

« o » o .
e Every message “received” by a process is shown as having
been sent by some other process

e Some pending messages might still be in
communication channels

* And we want to do this while running

Turn idea into an algorithm

* To start a new snapshot, p,

 Builds a message: “P; is initiating snapshot k”.
 The tuple (p;, k) uniquely identifies the snapshot
e Writes down its own state

e Starts recording incoming messages on all channels

Turn idea into an algorithm

* Now p; tells its neighbors to start a snapshot

* In general, on first learning about snapshot (p;, k), p,
e Writes down its state: p,’s contribution to the snapshot
e Starts “tape recorders” for all communication channels
e Forwards the message on all outgoing channels
 Stops “tape recorder” for a channel when a snapshot message for (p,,
k) is received on it
* Snapshot consists of all the local state contributions and all
the tape-recordings for the channels

Chandy/Lamport

* Outgoing wave of requests... incoming wave of
snapshots and channel state

* Snapshot ends up accumulating at the initiator, p;

* Algorithm doesn't tolerate process failures or message
failures.

. =

e i
\Z

A network

Chandy/Lamport

I Want to start a t //

/

Chandy/Lamport

w

-

/

\

/

P

D
7 S
\

_

y

~

A network

Chandy/Lamport

w

p starts monitoring ¢ //
q

i/\Q
\Z

A network

Chandy/Lamport

fh Ip&

/&

A network

p floods message on
outgoing channels... -q

A network

Chandy/Lamport

A network

A network

A network

A network

A network

A network

A network

P

Using logical clocks for cuts

* Application could also set a logical clock WAY ahead
* Rule: each time the clock reaches a multiple of
100,000,000 write down your state

 So: node p sets clock ahead to 1,000,001 (and writes
down its state). Then floods the network

* As the message reaches nodes, each records its state

P ———

Summary

* We've seen that true clocks are “tricky” in distributed
systems but that we can use simple integers or vectors
of integers to capture event ordering

 Logical clocks capture just part of the ordering

e Vector clocks are larger but capture all the useful info.

® Then we looked at how one can interpret
“simultaneous” as a distributed concept

 Consistent snapshots or cuts (cuts being the “front line”
of a snapshot, which includes channel state too)

