Typical Cloud Computing
Services

Ken Birman

Cornell University. CS5410 Fall 2008.

P————

Last time: standards...

* We looked mostly at big architectural standards

* But there are also standard ways to build cloud
infrastructure support.

* Today: review many of the things one normally finds
in a cloud computing setting, discuss what role each

plays
e Our goal is not to talk about best implementations yet
e We'll do that later

e Rather, focus on structure and roles and functionality

T}_:.‘_ A B | i S 4 1L o
etwork

If needed, machines in the bilities.
“DMZ” (demilitarized zone) can |octions

PR o ila nVaha LLIY

rom the

Either a server theEt bu1lfls web |» e

Internal namlng conventlon and
routing [
deliver

Internally there is often some

form of hlgh speed event

th
1 e “—spsage bus’,
Many services will have some |, multlcast

form of load-balancer to control

Service is often scaled out for | J

performance. Raises issues of [J
replication of data it uses, if that
data changes over time.

service service service service service

P ———

More components

* Data center has a physical structure (racks of
machines) and a logical structure (the one we just saw)

e Something must map logical roles to physical machines
e Must launch the applications needed on them
e And then monitor them and relaunch if crashes ensue
e Poses optimization challenges
* We probably have multiple data centers

e Must control the external DNS, tell it how to route
o Answer could differ for different clients

P———

More components

* Our data center has a security infrastructure involving
keys, certificates storing them, permissions

* Something may need to decide not just where to put
services, but also which ones need to be up, and how
replicated they should be

* Since server locations can vary and server group
members change, we need to track this information
and use it to adapt routing decisions

* The server instances need a way to be given parameters
and environment data

P ———

More components

* Many kinds of events may need to be replicated

e Parameter or configuration changes that force services
to adapt themselves

e Updates to the data used by the little service groups
(which may not be so small...)

e Major system-wide events, like “we’re being attacked!” or
“Scotty, take us to Warp four”

* Leads to what are called event notification
infrastructures, also called publish-subscribe systems
or event queuing middleware systems

P

More components

® Status monitoring components
e To detect failures and other big events
e To help with performance tuning and adaptation
e To assist in debugging
e Even for routine load-balancing
* Load balancers (now that we’re on that topic...)

* Which need to know about loads and membership

e But also may need to do deep packet inspection to look
for things like session id’s

P———

More, and more, and more...

* Locking service

e Helps prevent concurrency conflicts, such as two
services trying to create the identical file

* Global file system

e Could be as simple as a normal networked file system, or
as fancy as Google’s GFS

e Databases

e Often, these run on clusters with their own scaling
solutions...

Let’s drill down...

* Suppose one wanted to build an application that
e Has some sort of “dynamic” state (receives updates)
e Load-balances queries
e Is fault-tolerant

* How would we do this?

Middle tier runs
Clients business logic

P

Concerns?

* Potentially slow (especially during failures)

* Doesn't work well for applications that don't split
cleanly between “persistent” state (that can be stored
in the database) and “business logic” (which has no
persistent state)

P ———

Can we do better?

* What about some form of in-memory database
e Could be a true database

e Or it could be any other form of storage “local” to the
business logic tier

* This eliminates the back-end database

e More accurately, it replaces the single back-end with a
set of local services, one per middle-tier node

e This is a side-effect of the way that web services are
defined: the middle-tier must be stateless

* But how can we build such a thing?

P ———

Today’s prevailin

Middle tier and in-memory
database co-resident on same node

8 Backend database
Is now local to

8 middle tier servers:

A form of abstraction

N

Stateless middle tier In-memory database such
Clients runs business logic as Oracle Times-Ten

Services with in-memory state

¢ Really, several cases

e We showed a stateless middle tier running business
logic and talking to an in-memory database

e But in our datacenter architecture, the stateless tier was
“on top” and we might need to implement replicated
services of our very own, only some of which are
databases or use them

e So we should perhaps decouple the middle tier and not
assume that every server instance has its very own
middle tier partner....

These guys are the stateless

B ette r p i Ct u re) S a middle tier running the business

logic

“front-end applications”

Pub-sub combined And these are the in-memory

communication tech database, or the home-brew
service, or whatever

service service service service service service

P———

More load-spreading steps

¢ If every server handles all the associated data...

e Then if the underlying data changes, every server needs
to see every update

e For example, in an inventory service, the data would be
the inventory for a given kind of thing, like a book.

e Updates would occur when the book is sold or restocked

* Obvious idea: partition the database so that groups of
servers handle just a part of the inventory (or
whatever)

e Router needs to be able to extract keys from request:
another need for “deep packet inspection” in routers

A RAPS of RACS (Jim Gray)

» RAPS: A reliable array of partitioned subservices
* RACS: A reliable array of cloned server processes

A set of RACS

RAPS[[‘ O Q}[’}, @ | o J

: : Pmap “B-C”: {x, y, z} (equivalent replicas)
Ken Birman searching . ked hans based on load
for “digital camera” ere, y gets picked, perhaps based on loa

RAPS of RACS in Data Centers

Services are hosted at data centers but accessible systerwide

Data center A

4
pmap
\

N

/-

[

Data center B

Update sourcq

pihap

[OQQ]]

Operators can controlpmap, I12P map, other
parameters. Largescale multicast used to
disseminate updates

12P

|_ogical partitioning of services

=

map

Logical services map to a physical
resource pool, perhaps many to one

P ———

Partitioning increases challenge

* Previously, routing to a server was just a question of
finding some representative of the server

e A kind of “anycast”

* But now, in a service-specific way, need to

 Extract the partitioning key (different services will have
different notions of what this means!)

e Figure out who currently handles that key
 Send it to the right server instance (RAPS)

e Do so in a way that works even if the RAPS membership
is changing when we do it!

Drill do

* Talking to

[] e

member, H Q joins and needs to rendezvous [S could
to learn that P is up and is the
cur

R joing If P crashes or just terminates, Q
tll takes over and is the new leader.

/ The view is now {Q,R}

f 0

* The client system will probably get “old” mapping data

* Hence may try and talk to p when the service is being
represented by q, orr...

P ———

Causes of dynamicism (“churn”)?

* Changing load patterns
* Failures

* Routine system maintenance, like disk upgrades or
even swapping one cluster out and another one in

* At Google, Amazon this is a continuous process!

e In the OSDI paper on Map Reduce, authors comment
that during one experiment that involved 2000 nodes,
sets of 8o kept dropping out.

e Google had their machines in racks of 20, 4 per power
unit, so this makes perfect sense: power upgrades...

P

Causes of dynamicism

* IBM team that built DCS describes a “whiteboard”
application used internal to their system

e Information used by the system, updated by the system

e Organized as shared pages, like Wiki pages, but updated
under application control

* They observed

e Tremendous variance in the sets of applications
monitoring each page (each topic, if you wish)

e High update rates
e Tens of thousands of membership events per second!

P ———

Causes of dynamicism

® One version of the Amazon.com architecture used
publish-subscribe products for all interactions
between front-end and back-end servers
* They created pub-sub topics very casually
e In fact, each client “session” had its own pub-sub topic
e And each request created a unique reply “topic”

* Goal was to make it easy to monitor/debug by
listening in... but effect was to create huge rate of
membership changes in routing infrastructure

* Again, tens of thousands per second!

think of the sets as changing constantly

Services are hosted at data centers but accessible systerwide

Data center A Data center B
, o] | (\ 0 Update —
OO0 @,
\\5
'O\ || |O Of | o=
@) N o/
)
O~
\\
1
—/
[J
[J
[J

. ogical partitioning of services

%
-
(
\ N
Y...

12P
map

Logical services map to a physical
resource pool, perhaps many to one

Operators can controlpmap, I12P map, other
parameters. Largescale multicast used to
disseminate updates

P ———

Implications of dynamics?

* How can we conceal this turbulence so that clients of
our system won't experience disruption?

e We'll look closely at this topic soon, but not right away

e Requires several lectures on the topic of “dynamic group
membership”

* How do implement things like routing

e At a minimum, need to use our event notification
infrastructure to tell everyone who might need to know

* Poses a theoretical question too
e When can a highly dynamic system mimic a “static” one?

P———

Recall our original goal...

* We're seeing that “membership tracking” in our data
center is more of a problem that it originally seemed

e We've posed a kind of theory question (can we mimic a
static system

e But introduced huge sources of membership dynamics

e Not to mention failures, load changes that induce
reconfiguration to handle new request patterns

* Plus, beyond tracking changes, need ways to program
the internal routing infrastructure so that requests will
reach the right nodes

P

One sample challenge problem

* Are these questions hard to solve? Let’s tackle one

* Consider a service (a single RACS if you wish)
e Might have no members (not running)
e One member (just launched...)
e Many members (steady state...)
e ...and changes may happen rapidly

* And let’s assign a special role to one member
e Call it the leader

P———

Who needs leaders?

* One real example: In French ATC data center, each
ATC sector is managed by a small group of controllers

e The “group” (RACS) has one agent on each controller
workstation, tracking actions by that person

e They back one-another up, but normally have distinct
roles. One guys directs the planes, one plans routes, etc

® There is a shared back-end database, and it can’t
handle huge numbers of connections

* So we have the leader connect to the database on
behalf of the whole group

Only the leader makes a
connection to the

database. This reduces
DB loads

Data center clients are
the ATC controllers, each
using a special browser —
Here’s our RAPS of RAC
but each RACS has a
leader now (red node)

P———

Other leader “roles”

* Leader might be in charge of updates to the group (for
example, if the database reports a change). A leader
might also monitor a sensor, or camera, or video feed
and relay the data

* Leader can hold a “lock” of some sort, or perhaps only
hold it initially (it would pass it to someone who
makes a request, etc)

* Generalization of a leader is an agreed ranking of
group members, very useful when subdividing tasks to
perform them in a parallel manner

Challenges

* How to launch such a service?

e Your application starts up... and should either become
the leader if none is running, or join in if the service is
up (and keep in mind: service may be “going down” right
at the same time!)

e How to rendezvous with it?

» Could use UDP broadcasts (“Is anyone there?”)

« Or perhaps exploit the DNS? Register service name much like
a virtual computer name - “inventory.pac-nw.amazon.com”

» Could use a web service in the same role
» Could ask a human to tell you (seems like a bad idea...)

P ———

Challenges

* Suppose p is the current leader and you are next in line
e How did you know that you're next in line? (“ranking”)
e How to monitor p?

e If p crashes, how to take over in an official way that won't
cause confusion (no link to database... or two links...)

e If p was only temporarily down, how will you deal with
this?

e What would you do if p and q start concurrently?

e What if p is up, and q and r start concurrently?

e What about failures during the protocol?

P———

Homework 1

* To get your hands dirty, we want you to use Visual Studio
to implement a (mostly) UDP-based solution to this
problem, then evaluate it and hand in your code

* You'll do this working individually

* Evaluation will focus on scalability and performance

e How long does it take to join the service, or to take over as
a new leader if the old one unexpectedly crashes?

e How does this scale as a function of the number of
application groups on each machine (if too hard can skip)

e Why is your solution correct?

P———

Back to data center services

* We can see that the membership service within a data
center is very complex and somewhat spread out

e In effect, part of the communication infrastructure

e Issues range from tracking changing membership and
detecting failures to making sure that the routing
system, load balancers, and clients know who to talk to

 And now we'e seeing that membership can have
“semantics” such as rankings or leader roles

* This leads us towards concept of execution models for
dynamic distributed systems

P ———

Organizing our technologies

* It makes sense to think in terms of layers:
e Lowest layer has core Internet mechanisms, like DNS
« We can control DNS mappings, but it isn’t totally trivial...
e Next layer has core services

 Such as membership tracking, help launching services,
replication tools, event notification, packet routing, load
balancing, etc

e Next layer has higher-level services that use the core

» Network file system, Map/Reduce, overlay network for stream
media delivery, distributed hash tables....

e Applications reside “on top”

P———

On Thursday?

* We'll peek inside of Map Reduce to see what it offers
e An example of a powerful user-oriented tool

e Map Reduce hides most of the complexities from clients,
for a particular class of data center computing problems

e It was built using infrastructure services of the kind
wee discussing...

* To prepare for class, please read the Map Reduce paper

e Short version from CACM (7 pages) or long version from
OSDI (14 pages)

e Links available on our course web page - click to the
slides page and look at Thursday entry...

