Web Services and SOA
Standards

Ken Birman

Cornell University. CS5410 Fall 2008.

P ———

A story of standards...

* What's a standard?
e Historically, the industry has advanced in surges
e First, a major advance occurs, like first web browser

e Big players jump on board, agree to cooperate to ensure
interoperability of their products, which will innovate in
terms of the user experience but standardize “internals”

* Today, we're awash in standards
e But creating a standard isn't any formula for success
e There are far more ignored standards than adopted ones

A short history of standards

* Some standards that mattered
e CORBA: general object-oriented interoperability
e J2EE: Java runtime environment
e NET: Microsoft’s distributed computing infrastructure

e Web Services: the web, but not limited to browsers
interacting to web servers.
« Web services use the same standards

« But the focus on programs that interact by exchanging
documents (web pages) that encode information

P———————

/ (Today) Web Services are “hot”

¢ This is the basic standard employed in cloud
computing systems
e Internet is at the “bottom” of the stack

e Then layer on standards used when browsers talk to web
servers (HTTP) and to encode those pages (HTML)

e Web services run over HTTP and HTML, but the web
pages have their own mandatory encoding, called SOAP.
It describes requests and responses on services

» The associated architecture is referred to as a “service
oriented architecture” (SOA) and the systems built
this way are “service oriented systems” (SOS).

Turtles all the way down...

“ A well-known scientist (some say it was Bertrand Russell)
once gave a public lecture on astronomy. He described how
the earth orbits around the sun and how the sun, in turn,
orbits around the center of a vast collection of stars called
our galaxy. At the end of the lecture, a little old lady at the
back of the room got up and said: "What you have told us
is rubbish. The world is really a flat plate supported on the
back of a giant tortoise.” The scientist gave a superior
smile before replying, "What is the tortoise standing on?"
"You're very clever, young man, very clever,” said the old
lady. "But it's turtles all the way down!"

P ———

Standards all the way down...

* We're starting to see a second generation of standards
layered on the basic web services ones

e XML on the bottom (web page stuff)
e Then web services on top of the web page stuft

e Then, for example, the military “global information
grid” (GIG) layered over web services

e Other emerging standards: financial data centers,
medical computing systems, etc

* These generally adopt the underlying standard, then
add additional rules for using it for specific purposes

P————

Elements of the standard?

* A collection of documents that spell out the rules
e There are a great many of these documents

e And like many standards, not all have been widely
adopted

* Vendors like Microsoft, BEA, IBM (even Google) have
their own platforms implementing parts of these
documents; in theory the systems interoperate

* But they also compete, by innovating around the edges

e

Basic Web Services model

Client

SOAP

\4

Backend
Processes

Basic Web Services model

“Web Services are software
components described via WSDL
which are capable of being SOAP
accessed via standard network
protocols such as SOAP over ‘

HTTP”
\/

Backend
Processes

Basic Web Services model

capable of being
accessed via standard network
protocols such as SOAP

-

Today, SOAP is the primary standard.
SOAP provides rules for encoding the
request and its arguments.

SOAP
Router

\4

Backend
Processes

Basic Web Services model

over

=

HTTP

Similarly, the architecture doesn’t assume
that all access will employ HTTP over TCP.
In fact, .NET uses Web Services “internally”
even on a single machine. But in that case,

communication is over COM

SOAP
Router

\4

Backend
Processes

WSDL
documents
are used to
drive object

assembly,
code
generation,
and other
development
tools.

described via WSDL
SOAP
Router

\4

Backend
Processes

WSDL
document

Web Services are often Front Ends

Client Platform

Web Service
invoker

Web

App
Server

WSDL-
described
Web Service

Web
Server
(e.g., IBM
SOAP WebSphere,
messaging BEA
WebLogic)

Server Platform

/

The Web Services “stack”

Business

BPEL4WS (IBM only, for now) Processes

Transactions Quality
Security of
Coordination Service

Reliable
Messaging

WSDL, UDDI, Inspection Description

SOAP Other
XML, Encoding Protocols

Messaging

TCP/IP or other network transport protocols Transport

P ———

How Web Services work

» First the client discovers the service.
* Typically, client then binds to the server.

* Next build the SOAP request and send it

e SOAP router routes the request to the appropriate
server(assuming more than one available server)

e Can do load balancing here.
» Server unpacks the request, handles it, computes

result. Result sent back in the reverse direction: from
the server to the SOAP router back to the client.

P———

Marshalling Issues

* Data exchanged between client and server needs to be
in a platform independent format.

e “Endian’ness differ between machines.
e Data alignment issue (16/32/64 bits)

e Multiple floating point representations.
e Pointers

> (Have to support legacy systems too)

Marshalling...

* In Web Services, the format used is XML.

e In UNICODE, so very verbose.
e There are other, less general, but more efficient formats.

P ———

Comparing with CORBA

* CORBA is an older and very widely adopted standard
e J2EE mimics it in most ways

e NET (Windows) is very similar in style

* Models applications as (big) “objects” that export
interfaces (methods you can call, with typed args)

* Then standardizes various tools for managing them

* Also provides for ways of connecting data centers over
a WAN protocol of their design (which runs on TCP)

P ———

Comparing with CORBA

CORBA

* Object centric

e RPC / remote method
invocation with typed
interfaces

® Much emphasis on
semantics of active
objects

e Standardizes most OO
infrastructure

Web Services

e Document centric

e Services treated as
document processors

e But can still do RPC...

* Document defines its
own needs and services
try to carry them out

* Standardizes things
documents can express

Remote method invocation

* Also called Remote Procedure Call: Invoke a procedure on a

remote machine “just” as you would on the local machine.
Introduced by Birrell and Nelson in 1985

Idea: mask distributed computing system using a “transparent”
abstraction

e Looks like normal procedure call

e Hides all aspects of distributed interaction

e Supports an easy programming model
Today, RPC is the core of many distributed systems.
Can view the WS client server interaction as an RPC.

RPC Optimization

* Delay sending acks, so that
imminent reply itself acts
as an ack.

e Don’t send acks after each
packet.

* Send ack only at the end of
transmission of entire RPC
request.

* NACK sent when missing
Figure 4.4. RPC using a burst protocol; sequence number detected

here the reply 1s sent soon enough so that an
acknowledgement 1o the burst 1s not needed.

Client Server

P————

RPC — what can go wrong?

* Network failure, client failure, server failure
* Assuming only network idiosyncrasies for now...
» RPCs use acks to make packet transmission more
reliable.
e If timeout with no ack, resend packet.
e Leads to the issue of replayed requests.

* Each packet has a sequence number and
timestamp embedded to enable detection of
duplicates.

could fail too?

* What does a failed request mean?
e Network failure and/or machine failure!

e Client that issued request would not know if the server
processed the request or not.

P———

How about layering RPC on TCP?

* Web services often (not always) run over TCP
* TCP gives reliable in-order delivery, flow control and
congestion control.
» Reliable: Acknowledgments and retransmissions.

e In-order: Sequence numbers embedded in each
message.

e Flow Control: Max allowed window size.

L

* Congestion Control: the saw tooth curve

e Ramp up as long as no timeouts.

« Slow-start phase - exponential increase (until the slow-start
threshold is hit)

» Congestion Avoidance phase - additive increase

e Multiplicative Decrease on timeout.

TCP optimizations

* Random Early Detection
¢ Selective Acknowledgments
* Fast Retransmit/Recovery

P———

Back to RPC on TCP:

* TCP gives reliable communication when both ends
and the network connecting them are up.

* So the RPC protocol itself does not need to employ
timeouts and retransmission.
e Simpler RPC implementation.
e But the failure semantics remain the same (weak)

RPC Semantics

* “Exactly Once”

e Each request handled exactly once.
e Impossible to satisty, in the face of failures.

» Can'’t tell whether timeout was because of node failure
or communication failure.

RPC Semantics...

* “At most Once”
e Each request handled at most once.

e Can be satisfied, assuming synchronized clocks, and
using timestamps.

e “At least Once”

e If client is active indefinitely, the request is eventually
processed (maybe more than once)

=g
=
=

v

J d

—

data centersare
NAT box

* Overcomes limited size of [Pv4 address space

ot A &

* Role is to translate a large number of internal host
addresses (Amazon or Google might have tens of
thousands of machines at each data center) into a
small number of externally visible ones

* Can also play a load-balancing function

P

Discovery

* This is the problem of finding the “right” service
e In our example, we saw one way to do it — with a URL

e Web Services community favors what they call a URN:
Uniform Resource Name

* But the more general approach is to use an
intermediary: a discovery service

Example of a repository

>

Name Type Publisher Toolkit Language (OF]
Web Services Performance and Application LisaWu N/A Cross-Platform
Load Tester
Temperature Service Client Application vinuk Glue Java Cross-Platform
Weather Buddy Application rdmgh724890 MS .NET C# Windows
DreamFactory Client Application billappleton DreamFactory Javascript Cross-Platform
Temperature Perl Client Example Source gfinkel3 Perl Cross-Platform
Apache SOAP sample source Example Source xmethods.net Apache SOAP Java Cross-Platform
ASS 4 Example Source TVG SOAPL.te N/A Cross-Platform
PocketSOAP demo Example Source simonfell PocketSOAP C++ Windows
easysoap temperature Example Source a0 EasySoap++ C++ Windows
Weather Service Client with Example Source oglimmer MS SOAP Visual Basic Windows
MS- Visual Basic
TemperatureClient Example Source jgalyan MS .NET C# Windows

Roles?

* UDDI is used to write down the information that
became a “row” in the repository (“I have a
temperature service...”)

* WSDL documents the interfaces and data types used
by the service

* But this isn’t the whole story...

P

Discovery and naming

* The topic raises some tough questions

e Many settings, like the big data centers run by large
corporations, have rather standard structure. Can we
automate discovery?

e How to debug if applications might sometimes bind to
the wrong service?

e Delegation and migration are very tricky

e Should a system automatically launch services on
demand?

Client talks to eStuff.com

* One big issue: we're oversimplifying

* We think of remote method invocation and Web
Services as a simple chain:

A glimpse inside eStuff.com

“front-end applications”

Pub-sub combined with point-to-point
communication technologies like TCP

service service service service service service

P

In fact things are even more complex....

* Major providers often have multiple centers in
different locations

* So: You access “Amazon.com’ but
e Which data center should see your request?
e When it arrives, which front-end host should handle it?

e That host will parallelize page construction... using
multiple services

e Those are replicated: which servers will be used?

P

To illustrate, look at CDNs

* Content distribution networks serve up videos and
other web content

* A simpler case than full-scale web services, but enough
to see some of the major mechanisms in action

* Used whenever you access a page with lots of images
on it, like the home page at Yahoo! or live.msn.com

Basic event sequence

* Client queries directory to find the service

* Server has several options:
e Web pages with dynamically created URLs

- Server can point to different places, by changing host names

- Content hosting companies remap URLs on the fly. E.g.
http://www.akamai.com/www.cs.cornell.edu (reroutes requests
for www.cs.cornell.edu to Akamai)

e Server can control mapping from host to IP addr.
» Must use short-lived DNS records; overheads are very high!
- (Can also intercept incoming requests and redirect on the fly

I C

ontent Routing Priﬁziple

(a.k.a. Content Distribution Network)

®s

se®

————
A

~ Content Routing PrirTcipIe

(a.k.a. Content Distribution Network)

E
=~

Content Origin here
at Origin Server

Content Servers
distributed
throughout the
Internet

Sites

———

- Content Routin

A

g PrirTcipIe

(a.k.a. Content Distribution Network)

Content Is served
from content
servers nearer to

the client

ZTwo basic types of CDN: cachec
and pushed

-
- L
s (’/\i‘/

Sites

Cached CDN

=

.vdf
@,

. Client requests

content.

. CS checks cache, if

miss gets content
from origin server.

‘ Cached CDN

<
=

Client requests
content.

CS checks cache, if
miss gets content
from origin server.
CS caches content,
delivers to client.

Cached CDN

@
A

i
0/¥ /

Sites

Client requests
content.

CS checks cache, if
miss gets content
from origin server.
CS caches content,
delivers to client.
Delivers content out
of cache on
subsequent
requests.

‘ Pushed CDN

-
' {‘

.
S . AL
i x‘ \

1.

2.

Origin Server
pushes content out
to all CSs.

Request served from
CSs.

P———

CDN benefits

e Content served closer to client

 Less latency, better performance

* Load spread over multiple distributed CSs
e More robust (to ISP failure as well as other failures)
e Handle flashes better (load spread over ISPs)

e But well-connected, replicated Hosting Centers can do
this too

e
E——

A

——,
————

How well do CDNs work?

E
=~
&

>

P———

How well do CDNs work?

Recall that the

bottleneck links are
sos 6bic6b§

at the edges.

ven if CSs are
pushed towards the
edge, they are still
behind the
bottleneck link!

ced latenc

TCP performance

DNS round trip
TCP handshake (2 round trips)

Slow-start
e ~8round trips to fill DSL pipe
e total 128K bytes

« Compare to 56 Kbytes for cnn.com home page
« Download finished before slow-start completes

Total 11 round trips

Coast-to-coast propagation delay is about 15 ms

e Measured RTT last night was soms
« No difference between west coast and Cornell!

30 ms improvement in RTT means 330 ms total improvement
e Certainly noticeable

P

Lets look at a study

* Zhang, Krishnamurthy and Wills

e AT&T Labs
* Traces taken in Sept. 2000 and Jan. 2001
» Compared CDNs with each other

* Compared CDNs against non-CDN

Methodology

* Selected a bunch of CDNs
e Akamai, Speedera, Digital Island

« Note, most of these gone now!
* Selected a number of non-CDN sites for which good
performance could be expected
e U.S. and international origin
e U.S.: Amazon, Bloomberg, CNN, ESPN, MTV, NASA, Playboy, Sony, Yahoo
* Selected a set of images of comparable size for each CDN
and non-CDN site

e Compare apples to apples
* Downloaded images from 24 NIMI machines

Including DNS Lookup Time

Client Location: US HTTP Option: Parallel-1.0

o o 0O
N O 0 -

o
\V

Cumulative Probability

-
D —

Adero
Akamali
Clearway

Digisle

LIS Qrigin

Intl Qrigin
1 2 3 4 5 6 7 8

Completion Time (DNS+Downloading) (seconds)

sponse Time Results
Including DNS Lookup Time

Aboutone gjient [ocation: US HTTP Option: Parallel-1.0

second *
NI
>, " -
E O 8 I \\ r --
-% \ //’
|

8 0.6 | = Adero
E / Akamai

0.4 Clearway
25T Digisle
c_"g' 02 | / Fasttide
= 1t o
8 0 ntl Origin

o 1 2 3 4 5 6 7 8
Author conclusion: CDNs generally provide much

shorter download time.

P

CDNs out-performed non-CDNs

* Why is this?
* Lets consider ability to pick good content servers...

* They compared time to download with a fixed IP

address versus the IP address dynamically selected by
the CDN for each download

e Recall: short DNS TTLs

Effectiveness of DNS load balancing

1

0.8]
06}
04|

02}

september 2000

January 2001

0lapy

[ELLIEY Y

Blapsadg

N [onaer dowrnoad time

N | onaer total ime

mmm [OMHES returmed same [P

E Shorer total fime

[ELIEYY

Blapaadg

a1s1B10

ABmuBSN
2pIEES

P

Effectiveness of DNS load balancing

O omtomeh ~e AR January 2001
Black: longer download = Lore dowricad s
i [Lurc:?ertutal tT:m
time = chorter ol ime

Blue: shorter download
time, but total time

longer because of DNS g 7
lookup f P = &
Green: same IP address - |® | |2
chosen z "

Red: shorter total time
oL_F0_FH_FH_FH |

0.8]
06}
04|

02}

oad balancing not very
effective

september 2000

January 2001

0lapy

[ELLIEY Y

Blapsadg

[ELIEYY

N [onaer dowrnoad time
N | onaer total ime
mmm OMHS returnegd sams 1P

E Shorer total fime

ABmuBSN
2pIEES

Blapaadg

a1s1B10

Other findings of study

* Each CDN performed best for at least one (NIMI) client

e Why? Because of proximity?
* The best origin sites were better than the worst CDNs

* CDNs with more servers don't necessarily perform better
e Note that they don’t know load on servers...

* HTTP 1.1 improvements (parallel download, pipelined
download) help a lot
» Even more so for origin (non-CDN) cases
e Note not all origin sites implement pipelining

——,

Ultimately a frustrating study

* Never actually says why CDNs perform better, only that
they do

* For all we know, maybe it is because CDNs threw more
money at the problem

e More server capacity and bandwidth relative to load

Back to web services

* We've seen that
e They embody a lot of standards, for good reasons

e Talking to Amazon.com is far more complex than just
connecting one computer to another: many levels of
choices and many services are ultimately involved

e Even serving relatively static content entails remarkably
complex and diverse infrastructure. True services do
much more than just hand out copies of files!

Relating to CS5140 themes

* We'll look more closely at some of the major
components of today’s most successful data centers

* But rather than limiting ourselves to superficial
structure, we'll ask how things work on the inside
e For example, how does Google’s Map/Reduce work?

e It resides on a cluster management platform. How does
that work?

e At the core, locking and synchronization mechanisms.
How do these work?

P————

Trustworthy web services

* A preoccupation of many today, and a Cornell specialty

e Not only do we want this complex infrastructure to work,

but we ALSO want it to...

... be secure, and protect private data

... give correct answers, and maintain availability
... be hard to disrupt or attack

... defend itself against spoofing, pfishing, etc

... be efficient to manage and cost-effective

* Existing platforms don't satisty these goals!

P————

Next week

* Services found in cloud computing systems and other
SOA environments

e There are lots of ways to build them... some more
effective than others

* Today we looked at standards... but standards don’t
extend to telling us how to build the services we need

* We'll spend a full lecture on Map/Reduce

e Recommend that you read the OSDI paper about this
platform

e Map/Reduce will be a focus of assignment one

