Cloud Computing and
Edge Computing

Ken Birman

Cornell University. CS5410 Fall 2008.

P———

Welcome to CS5140!

* A course on cloud computing, edge computing, and
related systems technologies

» We're using a textbook written by Professor Birman, (a
bit out of date). Copies on reserve.

* Grading mostly based on three assignments aimed at
hands-on experience with the things were learning in
class

* Background: Java or C++ (or C#), familiar with
threads, comfortable writing programs, had an
architecture course and an operating systems course.

P ———

Two side-by-side revolutions

* Cloud computing: trend is to move more and more
computing functions into large shared data centers

e Amazon EC2 “hosts” data centers for customers

e Google runs all sorts of office applications, email, etc on
their systems

* Yahoo! wants to be a one-source computing solution
e IBM has a vision of computing “like electric power”

* Edge computing: direct interactions among computers
(peers) out in the Internet

e For example, multi-user games, VR immersion

Email, file storage, —Databases, spreadsheets,

IM, search office apps

Client systems use
web technologies Web services

Google/IBM/Amazon/Yahoo! host the services

P

Supporting technologies

* Infrastructure * Cloud “enablers”
e Core management and e Map-Reduce
scheduling functions e BigTable
e Event notification services e Astrolabe
* Storage systems (GFS) e Amazon’s shopping cart

e Monitoring, debugging,

tuning assistance :
5 * Even higher level?

, , - e Tools for building and
* Increasingly: virtualization analyzing massive graphs

P ———

... Sadly, we can’t do everything!

* In CS5140 we don’t have time to cover all of these
topics, so we'll focus on infrastructure tools

* You can't build things like Map-Reduce without them!

e But you won'’t learn to use Hadoop (a popular open-
source Map-Reduce implementation) in this class

* Even within the infrastructure space, we'll pick and
choose our topics to get at some of the key ideas

* Secondary issue: we also want to look at the edge

—

~appen

AAT

e next big thing

-

on the edge of the network?

.... VR imersion... stributed
programming by “drag and drop”

http://liveobjects.cs.cornell.edu

Live objects are...

* An integration tool — a “thin” layer that lets us glue
components together into event-driven applications

e A kind of “drag and drop” programming tool

* Common framework unifies replication technologies

» Photo sharing that works
» Collaboration tools

» Office automation

» New Internet Services

> Interactive television

Example Applications

» Games and virtual worlds
» Emergency response

» Mobile services

» Coordinated planning

» Social networking

"Butthey also depend O dadtc
center resources

* Data centers host maps, databases, rendering software

* Think of the “static” content as coming from a data
center, and streams of events reflecting real-time
content coming directly from sensors and “synthetic
content sources”, combined on your end-user node

* All of this needs to scale to massive deployments

P ———

Our goals today

* In CS5140, we'll peel back the covers

* Try and understand major technologies used to
implement cloud computing platforms

- How did IBM/Amazon/Google/etc build their cloud
computing infrastructure?

« What tools do all of these systems employ? How are they
implemented, and what are the cost/performance tradeoffs?

- How robust are they?
* And also, how to build your own cloud applications

+ Key issue: to scale well, they need to replicate functionality

* The underlying standards: Web Services and CORBA

How does this overiap W
edge technologies?

* The edge is a world of peer-to-peer solutions

e BitTorrent, Napster/Gnutella, PPLive, Skype, and even
Live Objects

e How are these built? What issues need to be addressed
when systems live out in the wild (in the Internet)?

* But those edge solutions are invariably supported by
some kind of cloud service, and in the future the
integration is going to become more significant

* What happens when we graft edge solutions to cloud
platforms?

P

Connecting the cloud to the edge

* The cloud is a good place to
e Store massive amounts of content
e Keep precomputed information, account information

e Run scalable services

* The edge is a good place to
e Capture data from the real world (sensors, cameras...)
e Share high-rate video, voice, event streams, “updates”
e Support direct collaboration, interaction

[9/3/08] Web Services and SOA
standards. CORBA and OO standards

[9/8/08] Key components of cloud computing
platforms

[9/10/08] Cloud computing applications and
Map-Reduce

[9/15/08] Thinking about distributed systems:
Models of time and event ordering

[9/17/08] Clock synchronization and the limits of
real-time

[9/22/08] Consensus on event ordering: The GMS
Service(1)

[9/24/08] The GMS Service(2)

[9/29/08] State machine concept. Possible
functionality that our GMS can support

[10/1/08] Replication: basic goals. Ricochet

[10/6/08] Replication with stronger semantics:
Virtual synchrony

[10/8/08] Replication with consensus semantics:
Paxos

Topics we'll cover

[10/15/08] Transactional subsystems and Web
Services support for the transactional model

[10/20/08] How transactional servers are
implemented

[10/22/08] Gossip-based replication and system
monitoring. Astrolabe

[10/27/08] DHTs. Chord, Pastry, Kelips
[10/29/08] T-Man

[11/03/08] Trusted computing issues seen in cloud
settings. Practical Byzantine Agreement

[11/05/08] Interconnecting cloud platforms with
Maelstrom. Mirrored file systems.

[11/10/08] Life on the Edge: Browsers. BitTorrent

[11/12/08] Sending complex functions to edge
systems: Javascript and AJAX

[11/17/08] In flight web page and data
modifications and implications. Web tripwires

[11/19/08] Pure edge computing: Gnutella
[11/24/08] Resilient Overlay Networks. PPLive

P

Stylistic comments

* One way to approach CSsi140 would focus on a how-to
way of using standards and packages

e For example, Microsoft favors Indigo as their web
services solution for Windows platforms

e We could spend 12 weeks learning everything we can
about Indigo, do projects using Indigo, etc.

e You would emerge as an “Indigo expert”

P

Stylistic comments

* A second extreme would be to completely ignore the
web services standards and focus entirely on the
theory

e We would discuss ways of thinking about distributed
systems

e Models for describing protocols
e Ways of proving things about them

* You would be left to apply these ideas “as an exercise”

P ———

CS5140: Pursuing the middle

* The class will try and live somewhere in the middle

e About half of our lectures are on very concrete real
systems, like BitTorrent or Chubby, and how they work

e And about half our lectures are concerned with the
platform standards and structures and how they look

e A few lectures focus on the underlying theory

* Homework assignments will involve building real (but
simple) distributed systems using these ideas

e For this, we'll work with Windows platforms & technology

P———

Let’s look at an example

¢ To illustrate the way the class will operate, let’s look at
a typical example of a problem that cuts across these
three elements

e It arises in a standard web services context
e But it raises harder questions
e Ultimately, theoretical tools help us gain needed clarity

ATC status is a kind of temporal database: for each ATC sector, it tells
us what flights might be in that sector and when they will be there

P

Server replication

* Let’s think about the service that tracks the status of
ATC sectors

e Client systems are like web browsers

e Server is like a web service. ATC is a “cloud” but one
with special needs: it speaks with “one voice”

* Now, an ATC needs highly available servers.

e Else a crash could leave controller unable to make
decisions

e So: how can we make a service highly available?

P————

Server replication

* Key issue: we need to maintain that “one voice”
property

e Behavior of our highly available service needs to be
indistinguishable from that of a traditional service
running on some single node that just doesn't fail

* Most obvious option: “primary/backup”
e We run two servers on separate platforms
e The primary sends a log to the backup

e If primary crashes, the backup soon catches up and can
take over

A primary-backup scenario...

primary

L 10g
e
® .

Clients initially connected to primary, which keeps
backup up to date. Backup collects the log

4

”
P |

7’
v
”’
”
z © backup

Transient problem causes some links to break but not all.
Backup thinks it is now primary, primary thinks backup is down

Safe for US227 to land on
Ithaca’s NW runway

Safe for NWi to land on
Ithaca’s NW runway

@ backup

Some clients still connected to primary, but one has switched
to backup and one is completely disconnected from both

P

Oh no! But could this happen?

* How do web service systems detect failures?
e The specifications don't really answer this question

e A web client senses a failure if it can’t connect to a server,
or if the connection breaks

e And the connections are usually TCP

* So, how does TCP detect failures?

e Under the surface, TCP sends data in IP packets, and the
receiver acknowledges receipt.

e TCP channels break if a timeout occurs.

P

Provoking a transient fault

* Build a fairly complex network with some routers,
multiple network segments, etc

* Run TCP over it in the standard way

* Now disrupt some core component
e TCP connections will break over a 9o second period

 So... restore service after perhaps 30 seconds. Some
break, but some don't.

P

Implication?

* We end up with multiple servers that might each think
they are in charge of our ATC system!

* An ATC System with a split brain could malfunction
disastrously!
e For example, suppose the service is used to answer the

question “is anyone flying in such-and-such a sector of
the sky”

e With the split-brain version, each half might say
“nope’... in response to different queries!

Can we fix this problem?

* Sure. Just have the backup unplug the primary
* But less draconian solutions are also possible

e We'll look at this issue later in the class

e Need “agreement” on which machines are up and which
have crashed

e Can’t implement “agreement” on a purely 1-to-1 (also
called “end-to-end”) basis.
« Separate decisions can always lead to inconsistency

» So we need a “membership service”... and this is fundamentally
not an end-to-end concept!

P ———

End-to-End argument

* Commonly cited as a justification for not tackling
reliability in “low levels” of a platform

* Originally posed in the Internet:

e Suppose an IP packet will take n hops to its destination,
and can be lost with probability p on each hop

e Now, say that we want to transfer a file of k records that
each fit in one IP (or UDP) packet

e Should we use a retransmission protocol running “end-
to-end” or n TCP protocols in a chain?

e
e

A

——,
e

End-to-End argument

SOUICE Loss rate: p%
oo
Probability of successful transit: (1-p)",
Expected packets lost: k-k*(1-p)"

P

Saltzer et. al. analysis

o If p is very small, then even with many hops most
packets will get through

e The overhead of using TCP protocols in the links will
slow things down and won't often benetfit us

e And we'll need an end-to-end recovery mechanism “no
matter what” since routers can fail, too.
* Conclusion: let the end-to-end mechanism worry
about reliability

——,

Generalized End-to-End view?

* Low-level mechanisms should focus on speed, not
reliability

* The application should worry about “properties” it
needs

* OK to violate the E2E philosophy if E2E mechanism
would be much slower

E2E is visible in J2EE and .NET

e If something fails, these technologies report timeouts
e But they also report timeouts when nothing has failed

e And when they report timeouts, they don'’t tell you what
failed

e And they don't offer much help to fix things up after the
failure, either

* Timeouts and transient faults can’t be distinguished
e Thus we can always detect failures.

e But we'll sometimes make mistakes.

end-to-end failure detection?

* ATC example illustrated a core issue

* Existing platforms
e Lack automated management features

e Inherit features of the Internet... even ones that embody
inappropriate behavior

e In this example, we saw that TCP handles errors in ad-
hoc, inconsistent ways

* Developers often forced to step outside of the
box... and may succeed, but might stumble.

* In CSs140 we'll try and tackle some of these
questions in a more principled way

P———

Even this case illustrates choice

* We have many options, if we are willing to change
the failure semantics of our platform

e Just use a single server and wait for it to restart
« This common today, but too slow for ATC
« Cloud computing systems usually need at least a few seconds

e Give backup a way to physically “kill” the primary, e.g.
unplug it
o If backup takes over... primary shuts down

e Or require some form of “majority vote” and implement
this in the cloud computing platform itself
- System maintains agreement on its own structure

* Later we'll see what the last of these options entails

P ———

Elements of cloud computing

* One perspective: the laundry list of tools and technologies
we saw earlier

* A second perspective: a collection of abstractions and
assumptions that the cloud needs to implement, and that
the developer can then “trust”

e For example, if the cloud were to implement a failure

detection mechanism, the developer could trust it, and split
brain problems would be avoided

e We'll generalize this way of thinking. The cloud is a provider
of abstractions. Specific tools implement those abstractions

P

ATC example illustrates...

* A form of replication (one form among many)

* An example of a consistency need (one kind of
consistency but not the only kind)

* A type of management “implication” associated with
that consistency need

* A deeper question of what it means for a system to
agree on the state of its own members

! Ow can a system tracE |%s own

membership?

* We've discussed the idea that a cloud might offer users
some form of VMM abstraction
e E.g. Amazon.com might tell Target.com “we’ll host your
data center” but rather than dedicate one machine for

each server Target thinks it needs, Amazon could
virtualize the servers and schedule them efficiently

* So... let’s virtualize the concept of failure handling

Typical client-server scenario

TCP used for connections

e Each channel has its
own timers

e If a timeout occurs,
. « .) ”
clients “fail-over

]
to the backup ﬁ
T~
c~_7 "

Split brain scenario

Potential for inconsistency

e Each client makes its own

@
decisions ﬁ\»\ / // =
\\,«@4\
P i

e Outcome can be
Inconsistent

* Concern:
“split brain” behavior

7
(B —
(B Ry vy

-~~~ Hear and obey. |
The primary is
down. I have

R()Ie Of an O ____spoken!!!

An all-seeing eye.
* Clients must obey it @ .
N

o If the oracle makes a @ u/;

- : -
mistake, we “do as it sqvs’ e
anyhow ai "IU”

s

fear of inconsistency.

@
» Now we just hope @\(j/:
e

&< E

Track membership

® This eliminates our

mistakes are rare!

P

Oracle

* A kind of all-seeing eye that dictates the official policy
for the whole data center

e If the Oracle says that node X is up, we keep trying to
talk to node X

e If the Oracle says node X is down, we give up

* An Oracle imposes a form of consistency

P

Oracle

* Later we'll see that an Oracle can be implemented in a
decentralized way

e Some (perhaps all) nodes run a service

e The service elects a leader, and the leader makes
decisions (if you think a node is faulty, you tell it)

e If the leader fails, a majority election is used to elect a
new leader

* By continously requiring majority consent, we
guarantee that split-brain cannot occur.

P———

Stepping back

* So one goal of CS5140 is to look at these issues on the
boundary of

e What technologies can and can’t do
e What we can do to overcome or evade the limits
e The associated theory

* A second goal is to think about how to structure
systems into more standard pieces

P

Back to the edge...

* Today’s focus was on issues see in cloud settings.

* But similar questions arise in peer-to-peer systems
used for file sharing, telephony, games, and even live
objects

e Not the identical notion of consistency and the style of
solutions is different

e We'll look at P2P replication... event notification...
building structured overlays... well known applications

P ———

Wrapping up

* CSs140 lectures will look at technologies and issues
such as the ones just reviewed
* CSs140 projects will
e Give you hands-on experience using Windows to build
web services and clients that talk to them

e And some limited experience using the solutions we
identify in class in the context of those services

» Grading: Mostly based on the three assignments

e First two will be done individually; third can be done in
small teams

P ———

Meng credit

* The CSs5140 project can be used for Meng project credit
e You must sign up for CS7900 credit with Ken Birman
e We recommend 3 credits, letter grade
e Your grade will be identical in CS5140, CS7900

e You are expected to tackle a slightly more ambitious
problem to get the extra credit

* Typically, cs7900 entails doing a more detailed
experimental evaluation of assignment three and
reporting your findings

