
BAR Gossip
Lorenzo Alvisi

UT Austin

MAD Services

Nodes collaborate to provide service that
benefits each node

Service spans multiple administrative domains
(MADs)

Examples:
Overlay routing, wireless mesh routing,
content distribution, archival storage, …

How MAD Services Fail

Nodes can break
Fail-stop e.g., disk crash

Byzantine – arbitrary deviation
Misconfigured, compromised by virus,
operator error (“rm –rf *”), malicious user, …

How MAD Services Fail

Nodes can break
Fail-stop e.g., disk crash

Byzantine – arbitrary deviation
Misconfigured, compromised by virus,
operator error (“rm –rf *”), malicious user, …

Nodes can be selfish
Minimize work and maximize gain

e.g., in a cooperative backup service, store less than
fair share of data

Byzantine Model
[Lamport 1982,…]

Tolerates arbitrary deviations from specification

Can be practical
[Castro and Liskov 1999, Rodrigues et al 2001, Yin et al
2003, Abd El-Malek et al 2005, Johansen et al 2006,
Cowling et al 2006]

Byzantine Model
[Lamport 1982,…]

Tolerates arbitrary deviations from specification

Can be practical
[Castro and Liskov 1999, Rodrigues et al 2001, Yin et al
2003, Abd El-Malek et al 2005, Johansen et al 2006,
Cowling et al 2006]

Limits number of faulty nodes
e.g. Agreement requires

Assumes all other nodes are correct
Inappropriate when all nodes

may deviate when in their interest

f

f <n/3

Rational Model
[Nash 1950,…]

All nodes are rational, and rational nodes can
deviate selfishly from their specification

[Papadimitriou 2001, Cox and Noble 2003, Littlebridge et
al 2003...]

Rational Model
[Nash 1950,…]

All nodes are rational, and rational nodes can
deviate selfishly from their specification

[Papadimitriou 2001, Cox and Noble 2003, Littlebridge et
al 2003...]

Does not tolerate Byzantine behavior
Broken nodes may violate assumptions
Malicious nodes may cause unbounded damage

Inappropriate when some node
may deviate against its interest

Three Challenges

1. To develop a model in which it is possible to
prove properties about MAD services

2. To understand how to simplify the development
of MAD services in the new model

3. To demonstrate that MAD services developed
under the new model can be practical

Who’s to blame

Lorenzo Alvisi

Harry Li

Mike Dahlin

Jeff Napper

Edmund Wong

Allen Clement

Indrajit Roy

Jean-Philippe
Martin

Amit Aiyer

A First Foray
BAR (Byzantine, Altruistic, Rational) Tolerance

no bound on rational nodes

utility functions add expectation of Byzantine behavior

BAR-B, a BAR tolerant cooperative backup service
(SOSP 05)

uses BAR-tolerant RSM to implement abstraction of
Altruistic node on top of Rational and Byzantine ones

FlightPath, a BAR tolerant data streaming application
(OSDI 06)

uses BAR-tolerant gossip protocol to disseminate updates

Live Streaming

Examples: Internet radio, NCAA tournament,
web concerts, Internet TV

Practical challenges:
Reduce broadcaster’s used bandwidth
Minimize latency
Increase reliability
Tolerate link and node failures

Live Streaming Setup
Broadcaster

Clients

Live Streaming Setup
Broadcaster

Clients

Live Streaming Setup
Broadcaster

Clients

Live Streaming Setup
Broadcaster

Clients

Live Streaming Setup
Broadcaster

Clients

Rational Peers Don’t Share!
Broadcaster

Clients

Rational Peers Don’t Share!
Broadcaster

Clients

?

?
?

Reliability Degrades...

...and Altruistic nodes suffer

BAR Gossip

BAR Gossip

BAR Gossip

BAR Gossip

The Setup

Altruistic broadcaster
BAR clients
Static membership
Full membership list
Updates useful for
finite time

Application

The Setup

Altruistic broadcaster
BAR clients
Static membership
Full membership list
Updates useful for
finite time

Application
Public/Private key pairs
Notation:

Crypto

〈M〉A

The Setup

Altruistic broadcaster
BAR clients
Static membership
Full membership list
Updates useful for
finite time

Application

Benefit: playing updates
Cost: bandwidth
No long-term reputations

Incentive Structure

Public/Private key pairs
Notation:

Crypto

〈M〉A

BAR Gossip Overview

Balanced Exchange Optimistic Push

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Optimistic Push

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Little help to peers
that fall behind

Optimistic Push

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Little help to peers
that fall behind

Optimistic Push

In each round:
Select partners
Exchange histories

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Little help to peers
that fall behind

Optimistic Push

In each round:
Select partner
Exchange histories
Trade possibly unequal
numbers of updates

Safety net for lagging
peers

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

fair exchange

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

fair exchange is impossible without a
trusted third party

B. Garbinato and I. Rickebusch. Impossibility results on fair exchange. Tech.
Rep. DOP-20051122, Université de Lausanne, Distributed Object Programming
Lab.

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

fair exchange is impossible without a
trusted third party

so we settle for fair enough!

Balanced Exchange

In each round

Select a partner

Exchange histories

Trade equal number of updates

Exchange briefcases

Exchange keys }fair enough
exchange

Design principles

Design principles

Restrict choice

Design principles

Restrict choice

Eliminate non-determinism

Design principles

Restrict choice

Eliminate non-determinism

Evict provably deviant peers

Design principles

Restrict choice

Eliminate non-determinism

Evict provably deviant peers

Delay gratification

Design principles

Restrict choice

Eliminate non-determinism

Evict provably deviant peers

Delay gratification

Postpone payoff to keep rational peers
engaged

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim less

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Send briefcase

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Send briefcase

Don’t send briefcase

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Send briefcase

Don’t send briefcase Send bad briefcase

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Send briefcase

Send key

Don’t send briefcase Send bad briefcase

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Send briefcase

Send key

Don’t send briefcase

Don’t send key

Send bad briefcase

Select CSelect D
Select B

The Intuition
Restrict choice
! Eliminate non-determinism
! Evict provably deviant peers
Delay gratification

Send history

Claim moreClaim less

Send briefcase

Send key

Don’t send briefcase

Don’t send key Send wrong key

Send bad briefcase

Balanced Exchange
is a Nash Equilibrium
Theorem: A balanced exchange is incentive
compatible for strategies that maximize the
number of useful updates received in that
exchange

Balanced Exchange
is a Nash Equilibrium
Theorem: A balanced exchange is incentive
compatible for strategies that maximize the
number of useful updates received in that
exchange

Partner selection

History exchange

Briefcase exchange

Key exchange

Balanced Exchange
is a Nash Equilibrium
Theorem: A balanced exchange is incentive
compatible for strategies that maximize the
number of useful updates received in that
exchange

Partner selection

History exchange

Briefcase exchange

Key exchange
} Incentive

compatible

Partner Selection
Q: How do we limit a peer to one uniformly selected
partner per round?

A B

C

D

E

Partner Selection
Q: How do we limit a peer to one uniformly selected
partner per round?

A: Verifiable pseudo-random
partner selection

A B

C

D

E

C

D

E

Partner Selection

A’s PRNG seed in round

Q: How do we limit a peer to one uniformly selected
partner per round?

A: Verifiable pseudo-random
partner selection

r : 〈r〉A

A B

C

D

E

Partner Selection

A’s PRNG seed in round

Q: How do we limit a peer to one uniformly selected
partner per round?

A: Verifiable pseudo-random
partner selection

r : 〈r〉A

A B
check current round
check selection

〈〈r〉A, . . . 〉A

C

D

E

Partner Selection

A’s PRNG seed in round

Q: How do we limit a peer to one uniformly selected
partner per round?

A: Verifiable pseudo-random
partner selection

r : 〈r〉A

A B
check current round
check selection

〈〈r〉A, . . . 〉A

C

D

E

Partner Selection

A’s PRNG seed in round

Eliminates non-determinism

Q: How do we limit a peer to one uniformly selected
partner per round?

A: Verifiable pseudo-random
partner selection

r : 〈r〉A

A B
check current round
check selection

〈〈r〉A, . . . 〉A

C

D

E

Partner Selection

A’s PRNG seed in round

Eliminates non-determinism

Retains strength of randomness:
uniform selection of partners
unpredictability

Q: How do we limit a peer to one uniformly selected
partner per round?

A: Verifiable pseudo-random
partner selection

r : 〈r〉A

A B
check current round
check selection

〈〈r〉A, . . . 〉A

History Exchange

Q: How do we handle a client
lying about its history?

History Exchange

A B
〈〈r〉A,#HA〉A

〈HA〉A

〈HB〉B

Q: How do we handle a client
lying about its history?

A: Client commits to a history
before discovering partner’s history

History Exchange

Under-reporting decreases
number of useful updates
exchanged

Over-reporting risks eviction

A B
〈〈r〉A,#HA〉A

〈HA〉A

〈HB〉B

Q: How do we handle a client
lying about its history?

A: Client commits to a history
before discovering partner’s history

Briefcase Exchange

A BHistory exchange

〈ids
, upds

〉
A

〈id
s
′
,

up
ds
′
〉B

Q: How do we encourage a rational
client to send a briefcase?

Briefcase Exchange

A B

A: Client gives key only after
swapping briefcases

History exchange

〈ids
, upds

〉
A

〈id
s
′
,

up
ds
′
〉B

Q: How do we encourage a rational
client to send a briefcase?

Valid Briefcase Exchange

A BHistory exchange

〈ids
, upds

〉
A

〈id
s
′
,

up
ds
′
〉B

Q: How do we encourage a rational
client to send only appropriate
briefcases?

Valid Briefcase Exchange

A BHistory exchange

〈ids
, upds

〉
A

〈id
s
′
,

up
ds
′
〉B

Q: How do we encourage a rational
client to send only appropriate
briefcases?

A: Hold client accountable for
contents of briefcase

Valid Briefcase Exchange

Briefcase contains encrypted
updates and ids of updates
Inconsistencies risk eviction
Decryption key is
reproducible by broadcaster

A BHistory exchange

〈ids
, upds

〉
A

〈id
s
′
,

up
ds
′
〉B

Q: How do we encourage a rational
client to send only appropriate
briefcases?

A: Hold client accountable for
contents of briefcase

Key Exchange

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key? Briefcase exchange

〈
BA

〉B
〈

AB 〉
A

Key Exchange

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key? Briefcase exchange

〈
AB 〉

A

Key Exchange

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A

Key Exchange

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A〈
AB 〉

A

Key Exchange

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A〈
AB 〉

A〈
AB 〉

A

Key Exchange

Rational client minimizes cost
by sending key

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A〈
AB 〉

A〈
AB 〉

A

Key Exchange

Rational client minimizes cost
by sending key

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A〈
AB 〉

A〈
AB 〉

A

〈 BA〉B

Key Exchange

Rational client minimizes cost
by sending key
Rational client proactively
sends key

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A 〈
BA

〉B

Key Exchange

Rational client minimizes cost
by sending key
Rational client proactively
sends key
Hold client accountable for
key responses

A BHistory exchange
Q: How do we encourage a rational
client to send the appropriate key?

A: Repeated Key Requests

Briefcase exchange

〈
AB 〉

A 〈
BA

〉B

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Incentive compatible!

Optimistic Push

In each round:
Select partners
Exchange histories
Trade possibly unequal
numbers of updates

Safety net for lagging
peers

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Incentive compatible!

Optimistic Push

In each round:
Select partner
Exchange histories
Trade possibly unequal
numbers of updates

Safety net for lagging
peers

BAR Gossip Overview

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Incentive compatible!

Optimistic Push

In each round:
Select partner
Exchange histories
Trade possibly unequal
numbers of updates

Safety net for lagging
peers

Optimistic Push
A B

History exchange
{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

Optimistic Push
A B

History exchange
{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈ids, {u
7 , u

8 , u
9 }

〉
A

Optimistic Push
A B

History exchange
{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈id
s
′ , {

u 1
}
〉B

〈ids, {u
7 , u

8 , u
9 }

〉
A

Optimistic Push
A B

History exchange
{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈id
s
′ , {

u 1
}
〉B

〈ids, {u
7 , u

8 , u
9 }

〉
A

Optimistic Push
A B

History exchange
Q: How do we encourage a
lagging client to send as many
updates as possible?

{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈id
s
′ , {

u 1
}
〉B

〈ids, {u
7 , u

8 , u
9 }

〉
A

Optimistic Push

If necessary, include junk

Q: How do we encourage a
lagging client to send as many
updates as possible?

A: Require both briefcases to
have the same number of items

A B
History exchange

{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈id
s
′ , {

u 1
}
〉B

〈ids, {u
7 , u

8 , u
9 }

〉
A

Optimistic Push

If necessary, include junk

Q: How do we encourage a
lagging client to send as many
updates as possible?

A: Require both briefcases to
have the same number of items

A B
History exchange

{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈ids, {u
7 , u

8 , u
9 }

〉
A

〈id
s
′ ,{u

1
, j
un

k,
ju
nk
}
〉B

Optimistic Push

If necessary, include junk
Junk is larger than an update

Q: How do we encourage a
lagging client to send as many
updates as possible?

A: Require both briefcases to
have the same number of items

A B
History exchange

{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈ids, {u
7 , u

8 , u
9 }

〉
A

〈id
s
′ ,{u

1
, j
un

k,
ju
nk
}
〉B

Optimistic Push

If necessary, include junk
Junk is larger than an update

Q: How do we encourage a
lagging client to send as many
updates as possible?

A: Require both briefcases to
have the same number of items

A B
History exchange

{u2, u4, u5, u6, u7, u8, u9} {u1, u3}

〈ids, {u
7 , u

8 , u
9 }

〉
A

〈id
s
′ ,{u

1
,u

3
, j
un

k}
〉B

BAR Gossip Recap

Balanced Exchange

In each round:
Select partner
Exchange histories
Trade equal number of
updates

Incentive compatible!

Optimistic Push

In each round:
Select partner
Exchange histories
Trade possibly unequal
numbers of updates

Explore strategy space
experimentally

FlightPath Experiments

Setup: 45 Emulab clients, each update
multicast to random 3 clients

Goal: evaluate Optimistic Push strategy space

Which strategies are attractive?

Which strategies are attractive with
failures?

Alternate Strategies in
Optimistic Push

Responds
with updates

Responds
with junk

Doesn’t
respond

Initiates Pushes

Does not
initiate pushes

Alternate Strategies in
Optimistic Push

Responds
with updates

Responds
with junk

Doesn’t
respond

Initiates Pushes Follow
Protocol

Does not
initiate pushes

Alternate Strategies in
Optimistic Push

Responds
with updates

Responds
with junk

Doesn’t
respond

Initiates Pushes Follow
Protocol

Wasteful
Strategy

Does not
initiate pushes

Alternate Strategies in
Optimistic Push

Responds
with updates

Responds
with junk

Doesn’t
respond

Initiates Pushes Follow
Protocol

Wasteful
Strategy

Does not
initiate pushes Other Strategies

Convergence Graph

Convergence Graph

Convergence Graph

Convergence Graph

Reliability with Byzantine
Viewable

Conclusions
BAR Gossip:

Balanced Exchange: provable, ~98%
Optimistic Push: ~99.9%

Two key ideas:
Verifiable partner selection
Fair enough exchange

Currently working on:
Dynamic membership
Partial membership
Network awareness

Backup Slides

Optimistic Push’s Effect

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
 o

f
re

ce
iv

in
g
 a

n
 u

p
d
at

e

Proportion of rational nodes

Traditional gossip

Balanced + Optimistic

Balanced

Why Resend Key Requests?

73

〈 BA
〉B

A BHistory exchange

Briefcase exchange

〈
AB 〉A

〈
BA?〉A〈
BA?〉A

• Cost to A is small compared to big
benefit of unlocking briefcase

• Cost to B is large compared to
small benefit of not sending key

TCP and UDP

74

A BHistory exchange

Briefcase exchange

Key exchange

TCP

UDP

UDP necessary so that each
peer believes its partner will
send key requests

Why Reject?

• Peer terminates an exchange if that peer
expects nothing useful from its partner

• Peer expects something useful only if it
believes in fair enough exchange

• Fair enough exchange mechanism relies
on mutual fear of eviction

75

How Does Eviction Work?

• Broadcaster evicts clients by attaching
eviction notices onto updates

• Broadcaster periodically asks clients to
testify against their peers

• Clients testify because they expect
nothing useful from future exchanges
with those peers

76

End-to-End Metric

77

Strategy Jitter Std. Dev.

Follow Protocol 0.48% 1.16%

Wasteful Strategy 0.32% 0.78%

Initiate OP, Decline OP 11.59% 6.22%

Respond to OP with useful 18.10% 6.08%

Respond to OP with junk 14.76% 9.44%

Never run OP 47.94% 7.52%

78

Collusion

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
ab

il
it

y
 o

f
re

ce
iv

in
g
 a

n
 u

p
d
at

e

Proportion of colluding nodes

•
 Colluding nodes use unrealistic protocol
•
 BAR Gossip still robust for small colluding groups
•
 For large groups, colluding nodes may not trust each other

Denial-of-Service

DoS Resistant Unforgeable Multicast (DRUM)
• Resource bounding
• Random port hopping

79

Gal Badishi , Idit Keidar , Amir Sasson. Exposing and Eliminating Vulnerabilities to Denial
of Service Attacks in Secure Gossip-Based Multicast, In Proceedings of DSN, 2004.

