
Public-Key Encryption—

Welcome to Cryptomania!

Noah Stephens-Davidowitz

June 9, 2023

These are combined lecture notes for all of our lectures on public-key encryption. I combined
them together because (1) they’re really best presented together; and (2) there is a natural order to
present this material in that doesn’t really divide nicely into 75-minute chunks. So, these notes are
written in this more natural ordering. I present the material in class in a slightly different order.

Welcome to Cryptomania!

1 Minicrypt vs. Cryptomania

In Russell Impagliazzo’s famous paper introducing “Russell’s five worlds” [Imp95], he defined two
different worlds in which lots of cryptography is possible: Minicrypt and Cryptomania. Roughly
speaking, Minicrypt is a world in which one-way functions exist, but nothing “beyond” that.1 We
saw that one-way functions imply many cryptographic primitives: PRGs, PRFs, semantically secure
secret-key encryption schemes (and even CPA- and CCA-secure schemes), commitment schemes,
zero-knowledge proofs for all of NP, identification schemes, MACs, and signatures! Minicrypt has
plenty of fun primitives to keep a cryptographer busy. But, there’s a world outside of Minicrypt.
Russell called it Cryptomania, and today, we enter Cryptomania (insert drum roll/foreboding
music).2

Here’s the basic problem with Minicrypt. The secret-key encryption schemes that we’ve seen
so far are extremely useful for two parties that share a secret key. But, we often don’t have that
luxury. For example, when we visit a website for the first time, we do not have a shared secret key
with that website.

Of course, we still want to communicate securely in these cases. So, Alice would like some way
to send encrypted messages to Bob without a shared secret. But, if Alice can encrypt a message
without using any secret information, then so can anyone else! So, if we want something like this

1In Russell’s other three worlds—Algorithmica, Heuristica, and Pessiland—one-way functions do not even exist,
so very little cryptography is possible in these worlds.

2Boaz Barak defined a new world recently: Cryptofantasia. This is an even crazier world than Cryptomania. In
Cryptofantasia, an extremely powerful cryptographic primitive called Indistinguishability Obfuscation exists. (Ok,
as far as I know, Boaz only called it Cryptofantasia once in a blog post, and if you actually Google “Cryptofantasia,”
you get that one blog post and a bunch of super sketchy looking blockchain sites. Everyone actually calls this world
“Obfustopia.” But, clearly Cryptofantasia is the best name ever, so I call it Cryptofantasia even though nobody else
does.) We won’t enter Cryptofantasia in this course. It’s scary there.

1

https://windowsontheory.org/2016/02/26/hopes-fears-and-software-obfuscation/

to work, we have to find a way to allow anyone to create a ciphertext that only Bob can decrypt.
A reasonable person would probably find this idea implausible—maybe even impossible. (We’re
spoiled to have grown up in a world with public-key cryptography, so maybe we’re rather jaded.
But, public-key cryptography probably should surprise us.)

But, in Cryptomania, this is actually possible. And, as far as we know, we actually live in
Cryptomania. (E.g., if “factoring is hard” by some reasonable definition, then we live in Crypto-
mania, as we will see.) In fact, the vast majority of internet traffic is encrypted with TLS, which is
a complicated set of protocols, but is fundamentally built on public-key encryption. So, we’ve bet
the security of the internet on the assumption that we live in Cryptomania.

But, before we even give a definition, let’s devote a paragraph to thinking about what it would
be like to live in a world without public-key cryptography: Minicrypt. How would Alice send
a message to Bob? One can imagine various systems for accomplishing this—none satisfactory.
Maybe Alice and Bob can meet in person to agree on a secret key. That solution is not so bad
if Alice and Bob are good friends (although still rather tedious), but it wouldn’t really work for
the internet. Or maybe Alice could send Bob a secret key in the mail or via some courier service.
Maybe Alice and Bob could each share a secret key with some trusted third party, and talk to each
other via the third party. All of these solutions seem. . . not great. So, we should remember that
we’re lucky to live in Cryptomania (as far as we know).

Aside: Pure math is useful, and Hardy was (very very very very very) wrong

In 1940, G.H. Hardy (a very important number theorist, whom you may know because he was
the mathematician who brought Ramanujan to Cambridge) wrote a famous essay called “A Math-
ematician’s Apology”. Hardy did not mean “apology” in the sense of saying he was sorry. He
meant “apology” in a now old-fashioned sense that means something like “defense” or justifica-
tion.” (This old-fashioned use of the word “apology” lives on in the word “apologist,” which means
roughly someone who defends an idea—e.g., a capitalism apologist is someone who defends the idea
of capitalism in response to people who criticize it.)

Hardy was defending himself from what he perceived as a criticism of the apparent uselessness
of mathematics and, by extension, mathematicians. Specifically, he believed that the sort of math-
ematics that was his forte would never have any practical applications. He said, e.g., “We have
concluded that the trivial mathematics is, on the whole, useful, and that the real mathematics, on
the whole, is not.”

Hardy believed deeply that mathematics is beautiful, and he defended himself by saying that
the purpose of doing mathematics is to uncover this beauty. I agree! In fact, I agree quite strongly!
But, he also believed that this was the only purpose of the sort of pure mathematics that he loved,
and even that no other purpose would be discovered in the future. I probably would have agreed
with Hardy at the time,3 but it is amazing just how incredibly wrong he turned out to be.

Perhaps the most striking example of how wrong Hardy was is the incredible usefulness of the
kind of public-key cryptography that we will see below, based purely on number theory. This
is amazing both because of its extreme usefulness (it powers the internet!) and because of how
thoroughly grounded it is in pure mathematics. These constructions work entirely by manipulating
numbers, in much the same way that, say, Euler, Gauss, Sophie Germain, and Fermat would have
done. I find it to be strange, a bit frightening, and quite beautiful that most of us now walk around

3In fact, even though I know that Hardy was wrong, I still have trouble truly reconciling myself with that fact.

2

all day with a device in our pockets that is quietly doing some number theory.

2 Public-key encryption (also known as magic)

Fortunately (and surprisingly), we probably live in Cryptomania. We know how to build public-key
encryption. In Cryptomania, Bob has two keys: a public key pk and a secret key sk, generated
simultaneously by some key-generation algorithm Gen. We think of the public key pk as, well,
public. E.g., Bob may publish pk on his website, or he might simply send it to anyone who requests
it—including adversaries. The secret key sk, on the other hand, must remain, well, secret. I.e.,
Bob holds on to that and does not share it with anyone—not even with Alice. This secret key is
what allows him to decrypt. Using only pk, Alice (and anyone else), can compute some ciphertext
c← Enc(pk,m) encrypting her message m. And, Bob can use the secret key sk to decrypt it. I.e.,
m = Dec(sk, c). (The notation here suggests that Enc should be randomized and Dec should be
deterministic. This is typically the case.)

Definition 2.1. A semantically secure public-key encryption scheme is a triple of PPT algorithms
(Gen,Enc,Dec) and a message space M with the following properties.

• Correctness: For any message m ∈M and any n ∈ N,

Pr
(sk,pk)←Gen(1n)

[Dec(sk,Enc(pk,m)) = m] = 1 .

• Semantic security: For any pair of PPT algorithms A0,A1, there exists a negligible ε(n)
such that for all n ∈ N,

Pr
(sk,pk)←Gen(1n),b∼{0,1}

[(σ,m0,m1)← A0(1
n, pk); c← Enc(pk,mb);A1(σ, c) = b] ≤ 1/2 + ε(n) .

The definition of semantic security is a bit cumbersome as written above. We are describing
an interactive game in which the adversary runs in two stages, maintaining a state σ between the
two. It is far more natural to view this directly as an interactive game between an adversary and
a challenger.

Adversary Challenger

(sk, pk)← Gen(1n)
pk←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m0,m1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b ∼ {0, 1}
c← Enc(pk,mb)

c←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

We say that the adversary wins this game if b′ = b—i.e., if the adversary correctly guesses the
bit b corresponding to the message mb. The scheme is semantically secure if no PPT adversary
wins this game with probability that is non-negligibly larger than 1/2.

3

This idea (in a less modern form) is due to Diffie and Hellman [DH76] and Merkle [Mer78].
Intuitively, this definition solves the problem that we described above because, if such a scheme
exists, Bob can simply, e.g., publish his public key on his website, and Alice can send him whatever
message she likes encrypted under his public key. Welcome to Cryptomania!

2.1 Unpacking the definition

There are a few of things to notice about the above security notion. First, and most importantly,
notice that the adversary is given the public key pk! This is, of course, what makes this key public.
We saw the same thing with signatures, but here it really is quite surprising that we can achieve
such a strong notion of security. The adversary has all the information that she needs to encrypt
a message herself, but somehow she is not capable of reading an encrypted message.

This brings us to our second thing to notice: that a semantically secure public-key encryption
algorithm Enc must be randomized. In particular, the adversary can compute Enc(pk,m0) and
Enc(pk,m1) itself. If Enc were deterministic, then the adversary could simply check whether the
challenge ciphertext c equals Enc(pk,m0) or Enc(pk,m1). So, if anything satisfies this definition, it
better be randomized. In some sense, the random coins that Alice flips are the only things that she
knows that the adversary Eve does not—Eve knows the public key; she knows what plaintext Alice
might choose to send; she just doesn’t know the random coins used to generate the ciphertext.
(We saw roughly the same phenomenon for multi-message security in the secret-key setting on the
homework. Here the problem with deterministic schemes is even more pronounced!)

Third, recall that in the secret-key setting, we emphasized the importance of multi-message
semantic security. E.g., we saw that the one-time pad is secure for a single message, but completely
broken for two messages. And, it took us many lectures to finally construct a scheme (based on
PRFs, which we built using only one-way functions) that was secure for an arbitrary polynomial
number of messages. After putting so much emphasis on multi-message security, it might seem
very strange that the above definition only asks the adversary for a single pair of messages m0,m1!
But, actually, the above definition is equivalent to the multi-message variant in which the adversary
may choose polynomially many messages m0,1, . . . ,m0,` and m1,1, . . . ,m1,` and must guess the bit
b given (Enc(pk,mb,1), . . . ,Enc(pk,mb,`)).

Intuitively, these definitions are equivalent for public-key encryption because, again, with ac-
cess to the public key the adversary can generate encryptions herself. To prove the equivalence
formally, we could use a simple hybrid argument, switching the messages mb,1, . . . ,mb,` with
m1−b,1, . . . ,m1−b,` one at a time. We then show that an adversary that can distinguish between two
hybrids can be used to break semantic security by simply computing all but one of the ciphertexts
itself using the public key (and planting its own challenge ciphertext in the one remaining spot).
(Some years I give this equivalence for homework.)

2.2 Cryptomania is hard to find

One-way functions seem to be pretty easy to find (though we seem to be very far from proving
unconditionally that any function is one-way!). We saw that the existence of OWFs is equivalent
to the existence of hard puzzles, and we even saw a universal OWF. So, if hard puzzles exist, then
there is a universal secure construction of secret-key encryption (and PRGs, PRFs, ZKPs, . . .).

As a result, we have a good number of candidate one-way functions with a variety of construc-
tions. We therefore did not spend much time actually constructing one-way functions and instead

4

spent time on applications of one-way functions. (Of course, there is a large body of work studying
how best to construct one-way functions and other Minicrypt primitives like secret-key encryption,
PRGs, PRFs, etc. To a very rough approximation, much of this work is focused on coming up with
constructions that are very efficient but still secure.)

Public-key encryption is far more difficult to construct. We sometimes say that this is because
public-key cryptography requires hardness of “structured problems”—usually problems with some
nice algebraic structure that we can exploit in order to build this magical primitive. After forty
years of research, we have essentially only found a handful of constructions that are still believed
to be secure (and a rather long list of failed constructions). Because there are so few, we will see a
large fraction of them in these lectures. Most of these constructions fall into one of three paradigms.
They either use trapdoor permutations, trapdoor predicates, or key agreement. We will also see
lattice-based constructions, which don’t obviously fall into any of these categories (although the
construction that we will see is really a key-agreement-style scheme in disguise).

Trapdoor permutations

3 Public-key encryption from trapdoor permutations

Diffie and Hellman suggested a very natural primitive, called a trapdoor permutation, which they
suggested using to build public-key encryption [DH76]. (Of course, since Diffie and Hellman were
writing in 1976—before the era of careful formal definitions in cryptography—they did not have
the formal definition below.)

Definition 3.1. A trapdoor function is a family of functions Fk : Dk → Rk and PPT key-
generation algorithm Gen, which takes as input 1n and outputs a trapdoor τ and a key k, satisfying
the following properties.

• Efficiently computable: There is a PPT algorithm A such that for any (τ, k) output by
Gen and any x ∈ Dk, A(k, x) = Fk(x).

• Efficiently sampleable: There is a PPT algorithm A such that for any (τ, k) output by Gen
and any x ∈ Dk,4

Pr[A(k) = x] = 1/|Dk| .

(I.e., A outputs a random sample from Dk.)

• Trapdoor invertible: There is a PPT inversion algorithm I such that for any (τ, k) output
by Gen and any x ∈ Dk with y := Fk(x), Fk(I(τ, y)) = y. (I.e., I uses the trapdoor τ to find
an inverse of y.)

4The requirement that a trapdoor permutation be efficiently sampleable is probably best viewed as a minor
technical annoyance. Of course, a function Fk isn’t very useful if we cannot even efficiently find an element in its
domain Dk. Here, we ask just a bit more: that we can actually efficiently sample a uniformly random element in the
domain. One can be slightly more general and consider a trapdoor function to be defined together with a sampling
algorithm Samp, but for the examples that we will see, this extra generality is unnecessary.

5

• One way: For any PPT algorithm A, there is a negligible function ε(n) such that for all
n ∈ N,

Pr
(τ,k)←Gen(1n), x∼Dk

[x′ ← A(1n, k, Fk(x)); Fk(x
′) = Fk(x)] ≤ ε(n) .

(I.e., Fk is a one-way function if we simply ignore the trapdoor τ .)

Fk is a trapdoor permutation if it is a trapdoor function and for all k, Dk = Rk and Fk is a
bijection (i.e., if it is a trapdoor function that also happens to be a permutation). When Fk is a
trapdoor permutation, we sometimes write F−1τ (y) instead of I(τ, y), to emphasize that there is a
unique inverse.

Intuitively, to build a public-key encryption scheme from a trapdoor function, we should take
the public key to be k and the secret key to be τ . It is not immediately obvious what to do next,
though. Indeed, it is in general not known how to build public-key encryption from a trapdoor
function. Instead, we will need trapdoor permutations.

Indeed, if Fk is actually a trapdoor permutation, then a natural idea (that does not work!) is to
define Enc(pk,m) := Fk(m) and Dec(sk, c) := I(τ, c). This was the original idea behind trapdoor
permutations and the original suggestion of Diffie and Hellman (and they are still sometimes used
like this. . .) but the resulting scheme is actually not semantically secure, no matter which trapdoor
permutation Fk is used to instantiate it. In fact, it’s deterministic! To check if a ciphertext c is an
encryption of m0 or m1, an adversary can simply compute Enc(pk,m0) and Enc(pk,m1) and check
which one equals c. So, we have to be a bit more clever.

3.1 Using hardcore predicates of trapdoor permutations to encrypt

Notice that the definition of a trapdoor permutation only guarantees that it is hard to invert on
a random input. So, if we want to use a trapdoor function securely, we should probably call it on
a random input. I.e., our ciphertext c should probably include Fk(x) for some randomly sampled
x ∼ Dk.

We might then try using x as a one-time pad, e.g., we could define Enc(pk,m) := (Fk(x), x⊕m).
Then, the decryption algorithm would be Dec(sk, (c1, c2)) = I(τ, c1)⊕ c2. This is also not secure,
though. To break this scheme, the adversary, given a challenge ciphertext (c1 = Fk(x), c2 = x⊕mb),
can simply compute x∗ := c2 ⊕m0. If Fk(x

∗) = c1, then mb = m0. Otherwise, mb = m1.
The issue with this scheme is that a one-time pad only works when the pad is indistinguishable

from random. While we chose x uniformly at random, if we give the adversary y = Fk(x), then it
is trivial for her to distinguish x from random (by simply applying Fk and seeing if the result is
y)! (The above attack did exactly this.) So, we need to find some function P (x) such that P (x) is
indistinguishable from random even when the distinguisher knows Fk(x). Of course, this is exactly
what a hardcore predicate guarantees.

So, let Pk : Dk → {0, 1} be some hardcore predicate of Fk. I.e., given k and y := Fk(x) for
x ∼ Dk, it is hard to compute Pk(x) with probability non-negligibly larger than 1/2.

While formally Pk depends on k (since its domain does), it will typically be a simple function
that ignores k—such as the first-bit function. So, we will just write P . Then, here is our encryption
scheme, which encrypts a single-bit message m ∈ {0, 1}.

• Gen(1n): Call (τ, k)← GenF (1n) and output (sk := τ, pk := k).

6

• Enc(pk,m): Sample x ∼ Dk uniformly at random, and output (c1 := Fk(x), c2 := P (x)⊕m).

• Dec(sk, (c1, c2)): Output P (I(τ, c1))⊕ c2.

To see intuitively why this scheme is secure, simply notice that P (x) is indistinguishable from
random from the adversary’s perspective. The formal proof is very similar to many of the proofs
that we have already seen—in particular our proof that a very similar construction yielded a
computationally hiding commitment scheme. We therefore leave it as an exercise.

We could now devote some time to worrying about whether such hardcore predicates exist for
trapdoor permutations. Indeed, using the Goldreich-Levin theorem, one can generically convert a
trapdoor permutation into one with a hardcore predicate. However, in practice, we know of very
few trapdoor permutations, and in all cases there is a very simple hardcore predicate.

4 Rabin’s trapdoor function (aka squaring)

So, we should be excited because we have just built our first public-key encryption scheme! However,
it requires a trapdoor permutation, and we have not seen how to construct such an object yet.

So, now, let’s see how to build a trapdoor function, using an absolutely beautiful construction
due to Rabin [Rab79]. Unfortunately, it won’t quite be a trapdoor permutation yet. That will wait
until later. But, even though Rabin’s function as presented is not a trapdoor permutation, (1) you
will see in the homework how to make it a trapdoor permutation; and (2) it is secure assuming
that factoring is hard! (The other schemes that we build will rely on more exotic assumptions.)

The function itself is very simple, though it requires a bit of number theory background to see
what’s going on. The key-generation function samples two random n-bit primes p and q and takes
these as the trapdoor τ := (p, q). The public key is simply their product k := N := p·q. The domain
and range of Rabin’s function are both Z∗N := {1 ≤ z ≤ N − 1 : gcd(z,N) = 1}—i.e., the set of
numbers between 1 and N − 1 that are coprime to N . We then simply define FN (x) := x2 mod N .
(That’s it!) We need to show two things: (1) that FN is efficiently invertible given p and q; and
(2) that it is one way (assuming that factoring is hard—or, more formally, that factoring N = pq
is hard for random n-bit primes p, q).

To see how to use the trapdoor, we need to remember the Chinese Remainder Theorem (CRT,
which goes back at least to the 3rd century AD and a Chinese mathematician named Sunzi).
CRT tells us that, for N = pq, ab = c mod N if and only if ab = c mod p and ab = c mod q.
Furthermore, for any a ∈ Z∗p and b ∈ Z∗q , there is a unique c ∈ Z∗N such that c = a mod p and
c = b mod q. (The fancy way to say this is that Z∗N is isomorphic to Z∗p × Z∗q with isomorphism
given by x 7→ (x mod p, x mod q).) In fact, such a c can be computed efficiently given a, b, p, q.
To do so, we compute p−1, the inverse of p modulo q, and q−1, the inverse of q modulo p. (This
notation is dangerous. Notice that there is no inverse of p or q modulo N . So, here it is crucial that
these inverses are defined modulo q and p respectively.) We then set c := qq−1a + pp−1b mod N .
(Notice that in this funny notation, it is not the case that qq−1 = 1 mod N . Equivalently, we can
compute cp := q−1q mod N such that cp = 1 mod p and cp = 0 mod q and cq := p−1p mod N such
that cq = 0 mod p and cq = 1 mod q and then take c := acp+bcq.) It is easy to see that c = a mod p
and c = b mod q. (Notice that we have actually just stumbled into a proof of CRT!)

We will also introduce some notation. We sometimes simply write (a, b) or (a mod p, b mod q)
to represent the number c ∈ Z∗N such that c = a mod p and c = b mod q. This is sometimes called

7

the CRT representation of c. We write QRN := {x2 : x ∈ Z∗N} for the set of quadratic residues in
Z∗N .

In order to compute a square root of y ∈ QRN , we first compute a square root xp of y modulo
p and then compute a square root xq of y modulo q. (Recall that this can be done efficiently. For
example, if p, q = 3 mod 4, then we can simply take xp = y(p+1)/4 mod p and xq = y(q+1)/4 mod q.
It’s good to convince yourself that this works, using Fermat’s little theorem. For the general case,
see Appendix A.) Then, we use the procedure described above to find the unique x ∈ Z∗N such that
x = xp mod p and x = xq mod q. The CRT implies that x2 = y mod N . So, this procedure allows
us to use the factors (p, q) for N to compute square roots of elements in QRN !

But, notice that our choices here were not unique. y ∈ QRN has exactly two square roots
modulo p, ±xp mod p, and y has two exactly square roots modulo q as well, ±xq mod q. Therefore,
there are actually exactly four square roots of every square in Z∗N , corresponding to the four pairs
(±xp,±xq).

So, we can invert Rabin’s function, but it is not a one-way permutation. It is actually a four-
to-one function. In the next problem set, you will fix this. But, for now, let’s content ourselves
with building a trapdoor function. (In fact, a four-to-one trapdoor function is already enough to
build public-key encryption, though we will not bother to show this.)

Now, in order to prove that FN is one way, we will need to make some computational assumption.
(If we could prove this unconditionally, we would in particular prove that P 6= NP, which we don’t
plan to do in this class.) As it turns out, this function is one way if and only if it is hard to factor N .
(I.e., if and only if no PPT algorithm can factor a number N sampled as above with non-negligible
probability.) This is quite nice because it means that we can build a trapdoor function from an
assumption that we are very comfortable with, the hardness of factoring.

To see this, we show how to use an inverter for FN to factor N , i.e., we show that if FN is not
one way and therefore that there exists an efficient algorithm that inverts FN with non-negligible
probability, then there exists an efficient algorithm that factors N with non-negligible probability.
(Below is an example of the kind of proof sketch with lots of explanations and intuition that is
great for lectures notes that are meant to explain what is happening, but not great for homework
or research papers, which are meant to be easily checkable :).)

To that end, we make the following simple observation (which is at the heart of most modern
factoring algorithms). Suppose that we know x1, x2 ∈ Z∗N such that

x21 = x22 mod N .

Then, we can write x21−x22 = (x1+x2)(x1−x2) = 0 mod N . In other words, N divides (x1+x2)(x1−
x2). Since p is prime, p must divide either x1 + x2 or x1 − x2, and similarly q must divide one of
them. Of course, we might have x1 = ±x2 mod N , in which case this is not particularly interesting.
In particular, we might have that x1 − x2 = 0 or x1 + x2 = N or something like this. But, let’s
suppose that x1 6= ±x2 mod N . Indeed, we saw above that there are four square roots of x21, so
for any fixed x1 ∈ Z∗N , there are always exactly two choices of x2 such that x22 = x21 mod N but
x2 6= ±x1 mod N . If p and q both divide, say, x1−x2, then we have x1 = x2 mod N , a contradiction.
Similarly, if p and q both divide x1 +x2, then x1 = −x2 mod N , also a contradiction. So, under the
assumption that x1 6= ±x2 mod N , we must have either gcd(x1−x2, N) = p and gcd(x1+x2, N) = q
or vice versa. Either way, we can use x1 and x2 to factor N efficiently!

So, in order to factor, it suffices to find x1, x2 ∈ Z∗N such that (1) x21 = x22 mod N and (2)
x1 6= ±x2 mod N . The fancy way to say this is that x1, x2 form a non-trivial pair of square roots

8

of y := x21 mod N . (A pair x1, x2 of square roots is trivial if x1 = ±x2 mod N .) I call them “funny
square roots” because they’re kind of silly if you think about it. We want to show how to find such
a funny pair of square roots given an inverter for FN . But, an inverter for FN only gives us one
square root of y ∈ QRN . How do we find a funny pair?

To do so, we simply sample a random x1 ∼ Z∗N and compute y := x21 mod N . We then call
our inverter on y, and receive as output x2. If x22 = x21 mod N (of course, sometimes our inverter
might fail, but let’s condition on it succeeding), then I claim that x2 6= ±x1 mod N with probability
exactly 1/2. To see this, notice that, since we sampled x1 randomly, x1 is equally likely to be any
of the four square roots of y. But, the inverter only sees y. So, from the inverter’s perspective,
x1 is a uniformly random square root, and no matter which other square root x2 it chooses, with
probability 1/2 we will have x2 6= ±x1 mod N .

4.1 A formal proof of security for Rabin’s function

Ok, let’s do a formal proof. First, we need our formal computational assumption.

Assumption 4.1 (“Factoring is hard”). For any PPT A there is a negligible ε(n) such that for
all n ∈ N,

Pr
p,q∼PN

[(p′, q′)← A(N) : {p′, q′} = {p, q}] ≤ ε(n) ,

where Pn is the set of n-bit primes.

Notice that the above assumption is necessarily an average-case assumption. In particular, this
is much stronger than simply saying that it is hard to factor in the worst case. E.g., the above
assumption might be false, but it might still be hard to factor some numbers, even if it is not hard
to factor the product of uniformly random n-bit primes.

Theorem 4.1. If factoring is hard, then Rabin’s trapdoor function is hard to invert.

Proof. Suppose Rabin’s function FN is not hard to invert. Then, there exists an efficient adversary
A such that A such that

ε(n) := Pr
p,q∼PN ,x1∼Z∗N

[x2 ← A(N, x21 mod N) : x21 = x22 mod N]

is non-negligible.
We construct a factoring algorithm B as follows. B takes as input an integer N , where N :=

pq for (unknown) uniformly random n-bit primes p, q ∼ Pn. It then samples x1 ∼ Z∗N , sets
y := x21 mod N , and computes x2 ← A(N, y). Finally, it outputs p′ := gcd(x1 + x2, N) and
q′ := gcd(x1 − x2, N).

Notice that the input to A is distributed identically to its input in the security game against
FN . Therefore, we have

Pr[x21 = x22 mod N] = ε(n) .

Furthermore, as we noticed above, we have {p′, q′} = {p, q} whenever x21 = x22 mod N and x1 6=
±x2 mod N (i.e., whenever x1, x2 form a funny pair of square roots). The final thing to notice is
simply that, conditioned on x21 = x22 mod N , the probability that x1 6= ±x2 mod N is exactly 1/2,

Pr[x1 6= ±x2 mod N | x21 = x22 mod N] = 1/2 .

9

The reason for this is that the input y to A is independent of the specific choice of square root x1.
5

Therefore,

Pr[{p′, q′} = {p, q}] ≥ Pr[x21 = x22 mod N and x1 6= ±x2 mod N]

= Pr[x21 = x22 mod N] Pr[x1 6= ±x2 mod N | x21 = x22 mod N]

= ε(n)/2 ,

which is non-negligible, as needed.

So, Rabin’s function is in fact a trapdoor function, assuming that factoring is hard (for numbers
sampled from the appropriate distribution). Unfortunately, it is not a permutation. Below, we will
see RSA, a true trapdoor permutation (whose security relies on a stronger assumption). We will
also see different ways to construct public-key encryption!

5 RSA

We now present the RSA function, due to Rivest, Shamir, and Adleman [RSA78]. I like to think of
it as a modification of Rabin’s function that converts it into a trapdoor permutation, rather than
“just” a trapdoor function. (You will see a rather different way to modify Rabin’s function in the
homework.) Historically, RSA was actually discovered before Rabin’s function, so calling RSA a
modification of Rabin’s function is a little strange. Still, logically RSA is probably better viewed
as a successor to Rabin’s function—even if historically RSA came first. (Let me know if you agree
or disagree!)

So, let’s recall Rabin’s function. The trapdoor consists of two random n-bit primes p and q, and
the public key is N := pq. The function itself is then GN (x) := x2 mod N for x ∈ Z∗N . (I’m writing
G here and not F because I want to use F for RSA.) And, the “problem” with this function GN is
that it is four-to-one—i.e., there are always exactly four different elements x1, x2, x3, x4 ∈ Z∗N such
that GN (xi) = GN (xj). This results from the fact that every residue y = x2 mod p in Z∗p has two
square roots ±x mod p, and the same is true modulo q. By the Chinese Remainder Theorem, this
yields four different square roots, which are (±x mod p,±x mod q) in the CRT representation.

There is a natural solution to this, though. Instead of taking GN (x) := x2 mod N , what about
FN,e(x) := xe mod N for some exponent e? This is exactly the RSA function! By the CRT, this will
give a permutation if and only if the maps x 7→ xe mod p and x 7→ xe mod q are both themselves
permutations with domains Z∗p and Z∗q respectively.

So, when is the map x 7→ xe mod p a permutation over Z∗p? Well, this is a permutation if
and only if e is coprime to p − 1. To see this, recall that if e is coprime to p − 1, then there
exists an inverse d ∈ Z∗p−1 of e modulo p − 1, i.e., de = 1 + k(p − 1) for some integer k. So,

suppose that xe = ye mod p for some x, y ∈ Z∗p. Then, of course, we also have xde = yde mod p.

5E.g., consider the thought experiment in which we first sample a uniformly random quadratic residue y ∈ QRN ,
then we set x2 ← A(N, y), and then we sample a uniformly random square root x1 ∼ {x ∈ Z∗N : x2 = y mod N}.
Clearly, in this though experiment,

Pr[x1 6= ±x2 mod N | x2
1 = x2

2 mod N] = 1/2 ,

since there are exactly two choices for x1 where x1 = ±x2 mod N and two choices where x1 6= ±x2 mod N . However,
this thought experiment actually produces x1 and x2 that are distributed identically to those generated in the
reduction.

10

But, xde = x1+k(p−1) = x mod p, since by Fermat’s little theorem xp−1 = 1 mod p. Similarly,
yde = y mod p. So, we conclude that x = y mod p, i.e., we conclude that the map x 7→ xe mod p is
a permutation over Z∗p.

Rabin’s function with e = 2 failed to give a permutation specifically because p− 1 and q− 1 are
always even (for odd primes p and q). But, if we choose e to be coprime to both p− 1 and q − 1,
then we do in fact obtain a permutation. In practice, for efficiency reasons, it is common to take
e = 3, which yields a permutation if and only if p, q = 2 mod 3. (Actually, there are complicated
considerations that go into choosing e, and there are some issues with choosing e to be very small.
Instead, people often e = 216 + 1. Perhaps you can see why such an e would be a reasonable choice
for efficiency, given that exponentiation is typically computed via repeated squaring.)

Furthermore, the function x 7→ xe mod p is easy to invert over Z∗p when gcd(p−1, e) = 1 (if you
know p and e!)—even easier than finding square roots. To invert this function, we simply compute
d ∈ Z∗p−1, the inverse of e modulo p− 1, so that ed = 1 + k(p− 1) for some integer k. (Recall that
we can efficiently compute d given e and p using the Euclidean algorithm.) Then, by definition,
xed = x · x1+k(p−1) = x mod p, since xp−1 = 1 mod p for all x ∈ Z∗p.

More generally, to invert the map FN,e given the prime factors p, q of N , where gcd(e, φ(N)) = 1,
we can choose d ∈ Z∗φ(N) to be the inverse of e in the group Z∗φ(N). (Recall that φ(N) is the order

of the group Z∗N . In particular, for N = pq, φ(N) = (p − 1)(q − 1).) Given this trapdoor d and
y = FN,e(x) = xe mod N , we can efficiently compute the inverse x = yd mod N .

5.1 The RSA trapdoor permutation, formally

Given the legwork we’ve done above, the RSA trapdoor permutation is relatively straightforward.
There are many design decisions, such as how to choose the primes p, q (should they be congruent
to 2 mod 3? safe primes?) and how to choose e (should e random, or three, or 216+1?) that we will
simply leave unspecified. So, this is not really a description of a specific trapdoor permutation, but
rather a framework for building trapdoor permutations, where the specific trapdoor permutation
depend on the details of how one chooses p, q, and e. Specifically, the Gen algorithm below is not
fully specified—we simply wrote “choose p, q, e” without specifying how they should be chosen.

• Gen(1)n: Choose two n-bit primes p, q, and e ∈ Z∗(p−1)(q−1). The key is then (N := pq, e), and

the trapdoor is (N, d := e−1 mod (p− 1)(q − 1)).6

• FN,e(x) := xe mod N for x ∈ Z∗N

• F−1N,d(y) := yd mod N for y ∈ Z∗N .

That’s it! This is clearly efficiently computable, efficiently sampleable, and trapdoor invertible.
But, is it one way? I.e., is it hard to invert? The answer, of course, is that we don’t know—since
we don’t know how to prove even that one-way functions exist. However, in the case of Rabin’s
function, we were able to prove that inverting the function is as hard as factoring N (i.e., as hard
as factoring a number sampled from the same distribution as the key).

For RSA, no such result is known (though, there is a very interesting partial result—from one
of the first papers written by my good friend and constant collaborator Divesh Aggarwal—which
shows that any “natural” algorithm for breaking RSA yields a factoring algorithm [AM09]). (The

6We could also take p, q as our trapdoor. But, it is a bit cleaner to just use d.

11

function that you construct in the homework will be a trapdoor permutation that is provably secure
if factoring is hard.)

Instead, the best that we know how to do is simply to conjecture directly that the RSA function
is one way. Formally, we conjecture that no polynomial-time algorithm given N , e, and y :=
xe mod N , with N, e sampled as above and x ∼ Z∗N , can find x with non-negligible probability.
This is known as the RSA Assumption.

Assumption 5.1 (RSA). For any PPT A there is a negligible ε(n) such that for all n ∈ N,

Pr
N,e←Gen(1n), x∼Z∗N

[A(N, e, xe mod N) = x] ≤ ε(n) .

This is, of course, far less natural than the assumption that factoring is hard. And, since
the RSA function can in fact be inverted given the factorization of N , the RSA Assumption is
stronger than the assumption that factoring N is hard. I.e., if factoring is not hard, then the RSA
assumption definitely fails. However, it could potentially be the case that factoring is hard but
RSA can still be broken without factoring N .

Fortunately, the fastest attacks that we know of on RSA work by simply factoring the modulus
N . (At least, this is true when it is implemented carefully and correctly. There are many bad ways
to implement RSA that yield much faster attacks.) So, as far as we know, there is no faster way to
break RSA than to factor the modulus.

5.2 An RSA-based encryption scheme

For completeness, we present a full encryption scheme based on RSA. (It is exactly the same as the
scheme from trapdoor permutations described above, simply implemented using RSA.)

The original proposed RSA encryption scheme worked with plaintext space m ∈ Z∗N and defined
Enc((N, e),m) := me mod N . However, as we saw in the previous lecture, this is not actually
secure, since it is deterministic. (Vinod Vaikuntanathan likes to say to his cryptography class
something to the effect of “if there is one thing that you should take away from this class, it’s that
Enc((N, e),m) := me mod N is not a secure encryption scheme.”)

There are many ways to convert this into a secure encryption scheme. But, for our purposes,
the simple predicate-based strategy for encrypting a single bit that we discussed above is sufficient.
So, we need a hardcore predicate PN,e : Z∗N → {0, 1} for the RSA function FN,e. One possibility
would be to use the Goldreich-Levin theorem to get this hardcore predicate. But, as it happens,
the least-significant bit P (x) := x mod 2 is a hardcore predicate for RSA.7 (Formally, if a PPT
adversary can guess the least-significant bit of x with non-negligible advantage given xe, then there
is a PPT adversary that can break the RSA Assumption with non-negligible probability.) So, here
is our first concrete example of a public-key encryption scheme, which is provably secure assuming
that the RSA Assumption holds.

• Gen(1)n: Choose two n-bit primes p, q, and e ∈ Z∗(p−1)(q−1). Output sk = (N := pq, d := e−1

mod (p− 1)(q − 1)) and pk := (N, e).

• Enc((N, e),m ∈ {0, 1}): Sample x ∼ Z∗N . Output (y := xe mod N, b := m⊕ (x mod 2)).

7Here, by x mod 2 for x ∈ Z∗N , we literally just mean the parity of x when, e.g., interpreted as an integer between
0 and N − 1. It’s worth noting here that N is odd, so, e.g., x and xe mod N do not necessarily have the same parity.

12

• Dec((N, d), (y, b)): Compute x := yd mod N and output b⊕ (x mod 2).

That’s it. It’s surprisingly simple, right?!

Aside: Using such a scheme in practice (or not. . .)

Of course, the above scheme is horribly impractical, and would never be used as described to power
the internet. To make the scheme secure against the best known attacks (as of this writing), we
must take n to be in the thousands, so that N is thousands of bits long. Since the fastest known
algorithm for modular exponentiation runs in time roughly n2 log n (and in practice is significantly
slower), this means that the decryption algorithm takes millions of CPU cycles. If one used this to
encrypt and decrypt billions of bits, one bit at a time, it would require quadrillions of CPU cycles,
which might take my laptop weeks. So, not acceptable! (I’m not a practitioner, so I’m being very
hand-wavy here. I specified the decryption algorithm, because the encryption algorithm often takes
e = 3 or e = 216 + 1, which makes it faster by a factor of roughly n. And, frankly, I have no idea
what a “CPU cycle” actually is, so take what I just wrote with a huge grain of salt.)

Of course, this can be improved significantly by figuring out how to encrypt more than one bit
at a time. Indeed, there are now many tricks to do so using RSA, which are known as padding
schemes. However, even with the best known padding schemes, RSA is still a pretty inefficient way
to communicate if you want to have a long conversation. In practice, my understanding is that
RSA encryption is now not used nearly as much as the scheme that we will see in Section 9 (which
can be made very efficient by using some fancy group theory).

And, even then, one does not typically use public-key encryption directly to communicate.
Instead, one uses ideas like those in Section 15 to use just one public-key ciphertext in order to
establish a shared secret key. One can then communicate using secret-key encryption from then
on, which is much much faster in practice.

Trapdoor predicates

6 Trapdoor predicates

You might have noticed that our public-key encryption scheme from trapdoor permutations seems
not to use the full power of the trapdoor permutation. In particular, we had the decryption
algorithm compute the entire preimage x of Fk(x), but then we only used a single bit P (x). E.g.,
for RSA, the decryption algorithm went through all of the trouble of computing x = yd mod N ,
and then only used the single bit x mod 2. This seems wasteful, right? :)

Trapdoor predicates simply cut out the middle man. I.e., a trapdoor predicate is just explicitly
some predicate that is easy to compute with a trapdoor but hard without it. We give the formal
definition below, but we will then see a very elegant example that is perhaps more enlightening
than the definition. (Admittedly, our first example will not be secure. . .)

Definition 6.1. A trapdoor predicate is a family of predicates Pk : Dk → {0, 1} and a PPT
key-generation algorithm Gen satisfying the following properties.

• Efficiently sampleable: There is a PPT algorithm A such that for any key k and bit b,

13

A(k, b) is a uniformly random element x ∈ Dk subject to the constraint that Pk(x) = b. I.e.,
A(k, b) is uniformly random over the set {x ∈ Dk : Pk(x) = b}.

• Trapdoor computable: There is a PPT algorithm I such that

Pr
(τ,k)←Gen(1n),x∼Dk

[I(τ, x) = Pk(x)] = 1 .

(I.e., I uses the trapdoor τ to compute the predicate Pk(x).)

• Hard to predict: For any PPT algorithm A, there is a negligible function ε(n) such that
for all n ∈ N,

Pr
(τ,k)←Gen(1n), x∼Dk

[A(1n, k, x) = Pk(x)] ≤ 1/2 + ε(n) .

(I.e., Pk(x) is hard to predict given x and k.)

Intuitively, a trapdoor predicate is just a predicate Pk that is hard to compute without the
trapdoor τ but easy to compute with the trapdoor τ .

To build public-key encryption from such a scheme, we use the same idea as before. I.e., a
ciphertext encrypting the plaintext bit b ∈ {0, 1} is simply x sampled uniformly at random subject
to the constraint that Pk(x) = b. (Notice that we need the fancier notion of efficient sampleability
in order to use this.)

Our example of a trapdoor predicate will be far nicer than the actual definition (at least, the
example will be quite nice before we worry about some technicalities), so let’s jump right in.

7 Quadratic residuosity—first attempt and the Legendre symbol

Remember that we write QRN := {x2 mod N : x ∈ Z∗N} for the set of quadratic residues mod N .
We now also write QRN := {x ∈ Z∗N : x /∈ QRN} for the set of non-residues.

Here’s the rough idea behind the Goldwasser-Micali trapdoor predicate. As in all of our ex-
amples so far, our trapdoor will be τ = (p, q), two random n-bit primes. Our public key will be
N := pq and a uniformly random non-residue y ∈ QRN (so, the full key is k = (N, y)). In other
words, y is a random element in Z∗N that is not a square modulo N . Our domain DN is simply
Z∗N , and PN (x) is the predicate equal to 1 if x ∈ QRN and zero if x ∈ QRN . I.e.,

PN (x) :=

{
1 x ∈ QRN
0 x ∈ QRN

.

(You might see an issue with the probability that PN (x) equals one for random x, or perhaps you
know what the Jacobi symbol is and see a larger issue. Let’s not worry about this for now. We
will change some of the details above to fix this soon.)

Notice that, given just N , we can efficiently sample a uniformly random element from QRN ,
by simply sampling x ∼ Z∗N and outputting x2 mod N . Furthermore, given both y and N , we can
efficiently sample an element in QRN by sampling x ∼ Z∗N and outputting yx2 mod N . Here, we
are using the fact that if y1 ∈ QRN and y2 ∈ QRN , then y1y2 ∈ QRN . (Notice that it is not at all
obvious how we would generate an element in QRN if we did not have the element y. As we will
see, though, the resulting element is not a uniformly random element from QRN .)

14

As far as we know, it is hard to determine whether x is a square modulo some composite integer
N . But, it is easy to determine this modulo a prime integer p. (In fact, we saw in Section 4 that
it is even easy to compute square roots modulo primes p.) There is actually a fancy name for this.
It’s called the Legendre symbol, and it’s written

(x
p

)
:=

{
1 x ∈ QRp
−1 x ∈ QRp

.

(Ok. . . it’s actually typically written
(
x
p

)
, but this is terrible notation since it looks exactly like

it just means x/p. It’s unclear whether my notation is any better, but at least it doesn’t look
like a fraction. . .) There’s actually a very nice way to compute the Legendre symbol; we have(
x
p

)
= x(p−1)/2 mod p, which you saw in the homework.

Furthermore, if N = pq for primes p and q, then we have already seen that x is a square if and

only if
(
x
p

)
=
(
x
q

)
= 1 (i.e., x is a square modulo N = pq if and only if it is a square modulo p and

a square modulo q). So, we can use our trapdoor (p, q) to compute our predicate by first computing(
x
p

)
= x(p−1)/2 mod p and

(
x
q

)
= x(q−1)/2 mod q, and then simply checking if they are both equal

to one.
Putting all of this together, we get a correct public-key encryption scheme. To encrypt a bit

m ∈ {0, 1} using only the public key (N, y), we sample x ∼ Z∗N and output c := ymx2 mod N .
(This is just clever notation to say “output yx2 mod N if m = 1 and x2 mod N if m = 0.”) To
decrypt, we simply check if c ∈ QRN , which can be done efficiently using the trapdoor (p, q). If
yes, then m = 0. Otherwise, m = 1.

But, is this scheme secure? It turns out that the answer is no. Certainly, as described this is
not a trapdoor predicate on all of Z∗N for a very simple reason: there are fewer quadratic residues
than non-residues! Remember that every x ∈ QR has exactly four square roots in Z∗N . This means
that only 1/4 of the elements in Z∗N are residues. So, if you give me a random element, it is easy
to guess whether or not it’s a square with probability better than 1/2: I can just always guess that
it’s not a square! This silly adversary will be right with probability 3/4.

This silly adversary does not yield an attack on the encryption scheme itself, since it behaves
in exactly the same manner on encryptions of zero and encryptions of one. But, we will see a more
sophisticated attack in the next section.

7.1 The Jacobi symbol

To truly understand the attack on the above scheme, we will need to think a bit more carefully
about ciphertexts c := yx2 mod N that are encryptions of one. Remember that y part of the public
key, so we will think of it as fixed for now. And, remember how our decryption algorithm works:
it checks if c is a square mod p and if c is a square mod q and outputs zero if and only if it is both.
But, notice that our decryption algorithm could potentially encounter four different situations: c
might be a square mod both p and q, in which case c ∈ QR; but c could also be a square mod p
but not q, a square mod q but not p, or not a square mod either. We can encode this succinctly
via the Legendre symbol: the four possibilities are((c

p

)
,
(c
q

))
= (±1,±1) .

15

Notice that both
(
c
p

)
and

(
c
q

)
are unchanged if we multiply c by some square (x′)2 mod N . So,

our ciphertexts of one, c := yx2 mod N will always have((c
p

)
,
(c
q

))
=
((y
p

)
,
(y
q

))
,

regardless of our choice of x. In particular, ciphertexts of 1 are not uniformly random non-residues

c. Instead, they are special non-residues c with the property that
(
c
p

)
=
(
y
p

)
and

(
c
q

)
=
(
y
q

)
. (Of

course, ciphertexts c′ := x2 mod N of zero always satisfy((
c′

p

)
,

(
c′

q

))
= (1, 1) ,

by definition.) This seems a bit suspicious. We’d intended our ciphertexts of one to be uniformly
random elements from QRN , but they’re actually not. Instead, they are uniformly random in some
smaller set: the set of all points whose Legendre symbol matches y modulo both p and q.

As it happens (and this is not obvious), though it is believed to be difficult to determine whether
an element c is a square modulo N without knowing its factorization, we can learn some things

about the two Legendre symbols
((

c
p

)
,
(
c
q

))
, even if we don’t know p and q. E.g., it is possible to

efficiently distinguish the case ((c
p

)
,
(c
q

))
= (1,−1)

from the case when ((c
p

)
,
(c
q

))
= (1, 1) .

To see this, we must define the Jacobi symbol, introduced by Jacobi in 1837. It is defined to
equal to the Legendre symbol when its base is prime, and such that(x

N

)
:=
(x
p

)
·
(x
q

)
for N := pq. More generally, (x

p1 · · · p`

)
=
(x
p1

)
· · ·
(x
p`

)
,

i.e., the Jacobi symbol modulo a product p1 · · · p` is the product of the Jacobi symbols modulo
each factor p1, . . . , p`. (It is common to use the exact same notation for the Jacobi symbol and
the Legendre symbol, under the convention that we always mean the Jacobi symbol when N is
composite. Formally, the Legendre symbol is simply not defined for composite N , and since the
two symbols are equal when N is prime, there is no risk of confusion.)

Gauss’s celebrated law of quadratic reciprocity tells us that the Jacobi symbol satisfies the
following startling identity (x

N

)
= (−1)

x−1
2
·N−1

2 ·
(
N mod x

x

)
for odd x and N . This is not obvious at all, but it is true. (In fact, it is not so hard to prove. There
are many beautiful proofs online, and if you take a number theory class you will almost certainly see
at least one proof of this fact. Gauss himself published six different proofs, in spite of his notorious

16

reluctance to publish. He called quadratic reciprocity his “golden theorem.”) Together with the
rule (

2x

N

)
= (−1)

N2−1
8 ·

(x
N

)
,

this allows us to compute the Jacobi symbol efficiently.8 Specifically, we can repeatedly apply
these rules until we reduce the problem to a computation on small numbers. In fact, the algorithm
for computing the Jacobi symbol is basically just the Euclidean algorithm, since at each step we
replace (x,N) by (N mod x, x) (plus some bookkeeping for even x). The proof that it terminates
efficiently is therefore essentially identical to the same proof for the Euclidean algorithm.

So, our encryption algorithm is actually not secure. In particular, if(y
N

)
= −1 ,

which happens with probability 2/3, then we can easily distinguish ciphertexts of zero from cipher-
texts of one by checking the Jacobi symbol.

This is a very interesting example of a case where a perfectly innocent-looking cryptographic
construction turns out to be insecure because of some rather deep mathematics.

8 Goldwasser-Micali—quadratic residuosity done right

After rushing through this beautiful mathematics, we are ready to present a trapdoor predicate
based on a form of quadratic reciprocity that is believed to be secure. This construction is due to
Shafi Goldwasser (the patron saint of this class) and Silvio Micali [GM82].

Let JN := {x ∈ QRN ,
(
x
N

)
= 1} be the set of quadratic non-residues with Jacobi symbol equal

to one. (This is not standard notation.) Then, we can build the same trapdoor predicate (and
corresponding encryption scheme) as before with QRN replaced by JN . I.e., our trapdoor is still
t := (p, q), and our public key is now k := (N := pq, y ∼ JN). The predicate is again

PN (z) :=

{
1 z ∈ QRN
0 z ∈ QRN

,

but our domain is now JN ∪ QRN , rather than all of Z∗N . To sample efficiently from QRN , we
simply compute x ∼ Z∗N and output z := x2 mod N . To sample efficiently from JN , we just output

8The rule for even integers 2x might look complicated, but it is actually much easier to derive than the first. One
first notices that the Jacobi symbol is multiplicative,(xy

N

)
=
(x
N

)
·
(y

N

)
.

Then, one simply needs to compute (
2

N

)
to derive the rule for (

2x

N

)
.

Another way to state this rule that is less opaque is that for primes p equal to 1 or 7 modulo 8, 2 is a square modulo
p. For primes congruent to 3 or 5 modulo 8, 2 is not a square.

17

z := yx2 mod N instead. It is now easy to see that such a z is in fact uniformly distributed in JN ,
independently of y.9

To compute the predicate given the trapdoor (p, q), we simply check whether z is a square
modulo p and modulo q. (In fact, we only need to check one of these, since by construction we

always have that
(
z
p

)
=
(
z
q

)
. And, remember, that this can be done a bit more efficiently than by

attempting to compute the square root directly. To check if z is a square modulo a prime p, simply
check if z(p−1)/2 mod p is +1 or −1.)

This is a secure trapdoor predicate under the following computational assumption, which we
believe to be true.

Assumption 8.1 (Quadratic residuosity). For any PPT algorithm A, there exists a negligible ε(n)
such that for all n ∈ N,

Pr
p,q∼Pn,y∼QRpq

[A(y, pq) = 1]− Pr
p,q∼Pn,y∼Jpq

[A(y, pq) = 1] ≤ ε(n) ,

where we write Pn for the set of all n-bit primes.

To prove security, we apply the above assumption to the public key element y, rather than
on yx2 mod N or x2 mod N . I.e., we argue that, by the above assumption, no adversary can
distinguish between the trapdoor predicate game in which y ∼ JN is sampled honestly from one in
which y ∼ QRN is sampled from the quadratic residues. Notice that, if y ∈ QRN , then yx2 mod N
is distributed identically to x2 mod N . In other words, if we sample y ∼ QRN , then “encryptions
of zero” are identical to “encryptions of one.” So, this immediately implies security. Here is the
formal proof.

Theorem 8.1. The Goldwasser-Micali trapdoor predicate is hard to predict, assuming Assump-
tion 8.1.

Proof. Suppose that we have some PPT adversary A that wins the trapdoor predicate game against
the Goldwasser-Micali trapdoor predicate. In particular,

ε(n) := Pr
p,q∼Pn,y∼Jpq ,z∼QRpq∪Jpq

[A(pq, y, z) = Ppq(z)]− 1/2

is non-negligible, where here we write PN (z) for the predicate that is one if and only if z is a
quadratic residue mod N . (I.e., A is significantly more likely to output 1 and say “yep, that looks
like a quadratic residue” when z is sampled uniformly at random from QRpq, as opposed to from
Jpq.)

We construct an adversary B in the quadratic residuosity game as follows. B takes as input
N := pq for p, q ∼ Z∗N and y∗ ∈ Z∗N , where either y∗ ∼ QRN or y∗ ∼ JN . (Our goal is to output 1
in the first case and zero in the second.) It samples x ∼ Z∗N and b ∼ {0, 1} uniformly at random
and sets z := ybx2 mod N (i.e., z = x2 mod N if b = 0 and z = yx2 mod N if b = 1). Finally, it
runs b′ ← A(pq, y∗, z) and outputs 0 if b′ = b and 1 if b′ 6= b. I.e., it guesses that y∗ ∈ JN if and
only if b = b′.

9Specifically, one simply notes that for any fixed element c ∈ JN , yc−1 mod N is a quadratic residue (where c−1

means the inverse of c modulo N , which exists because c ∈ JN ⊂ Z∗N). Therefore, for every c, there are exactly
four values of x such that x2 = yc−1 mod N , since every quadratic residue has exactly four square roots. So, the
probability that z = c is exactly 4/|Z∗N |.

18

To see why this works, first suppose that y∗ ∼ JN , i.e., that y∗ is a uniformly random non-
residue with Jacobi symbol one, just like the y that is used in the trapdoor predicate game that
A plays. Then, notice that z is itself a uniformly random element from QRN ∪ JN , independent
of y. (We observed this in the discussion before this proof, and provided a proof in Footnote 9.)
Therefore, from the perspective of A, its view in this case is identical to its view in the trapdoor
predicate game, and it follows that

Pr
p,q∼Pn,y∗∼Jpq

[B(pq, y∗) = 1] = 1− Pr
p,q∼Pn,y∼Jpq ,z∼QRpq∪Jpq

[A(pq, y, z) = Ppq(z)] = 1/2− ε(n) .

On the other hand, if y∗ ∼ QRN , then notice that z is a uniformly random quadratic residue
independent of the bit b. Therefore, no matter how the adversary A behaves in this case, we must
have Pr[b = b′] ≤ 1/2. Putting the two things together, we see that

Pr
p,q∼Pn,y∗∼QRpq

[B(pq, y∗) = 1]− Pr
p,q∼Pn,y∗∼Jpq

[B(pq, y∗) = 1] ≥ ε(n) ,

which is non-negligible, as needed.

Unfortunately, just like the RSA assumption, Assumption 8.1 is not known to be equivalent
to the hardness of factoring. In some sense, it actually seems like a far stronger assumption than
RSA, since it’s actually a decisional assumption. I.e., it says that it is hard to compute a single bit
(with probability non-negligibly than 1/2), whereas the RSA assumption only says that it is hard
to compute an entire n-bit number (with non-negligible probability). And, it’s a bit unnerving that
there’s this non-trivial issue involving the Jacobi symbol. (Indeed, perhaps the most important
thing to remember about the discussion above is that it’s easy to build a scheme that’s insecure. If
Shafi and Silvio weren’t so knowledgable about number theory, they might not have known about
the Jacobi symbol and then published a totally insecure scheme.) Maybe one of you will find some
additional subtlety that breaks Assumption 8.1?

On the other hand, quadratic residuosity is an extremely well studied problem by mathemati-
cians going back centuries, which makes us quite confident that Assumption 8.1 holds. And, like
for RSA, the fastest attacks that we know of work by factoring N . Nevertheless, it could possibly
be the case that Assumption 8.1 is false, even if factoring is hard.

Key agreement and Diffie-Hellman

9 Diffie-Hellman key agreement

Finally, we see the third paradigm for public-key cryptography: key agreement (often also called
key exchange). The key-agreement paradigm looks at public-key cryptography from a different
perspective. Instead of thinking directly about how Bob can use Alice’s public key to encrypt
a message, we think about how Alice and Bob can together generate a shared (pseduo)-random
secret key via only public communication. If they can do this, then sending a message securely is
relatively easy: they can use a secret-key encryption scheme or just a one-time pad.

Here is the formal definition. Again, the actual construction that we present is far easier to
understand than the formal definition. (It is, in my opinion, the most beautiful construction that
we will see.)

19

Definition 9.1. A key-agreement protocol is a protocol between two PPT algorithms A and B
satisfying the following properties.

• Correctness. At the end of the protocol, A and B each output the same string sk ←
〈A,B〉(1n), with sk ∈ {0, 1}n.

• Security. For any PPT adversary E, there is a negligible function ε(n) such that

Pr
(T,sk)←〈A,B〉(1n)

[E(T, sk) = 1]− Pr
(T,sk)←〈A,B〉(1n),x∼{0,1}n

[E(T, x) = 1] ≤ ε ,

where we write T for the transcript generated by A and B (i.e., the messages that they send).
In other words, the secret key is indistinguishable from a random string, even to an adversary
that has seen all of the messages sent by A and B.

Now, here is the beautiful protocol due to Diffie and Hellman. This was actually proposed in
Diffie and Hellman’s original paper [DH76]. We present it here under the assumption that there
is some publicly known group G whose order is a known n-bit prime p together with a known
generator g. (We can accomplish this by assuming the existence of some fixed sequence Gn of
groups, or we can just have Alice choose this group and include it in her first message. We also
have clearly cheated a little here, since our secret key is no longer in the domain {0, 1}n. Formally,
we should either change our definition to allow for a different key space or change our protocol.
But, such details get in the way of a beautiful protocol, so we ignore them.)

Alice Bob

a ∼ Zp

A := ga−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b ∼ Zp

B := gb←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OUTPUT Ba

OUTPUT Ab

Notice that Alice and Bob both output the same thing—gab. The DDH assumption is exactly
the assumption that the above scheme is a secure key-agreement scheme. I.e., it says that an
adversary with access (g, ga, gb) cannot distinguish gab from a random group element. Here is the
formal assumption, which applies to some sequence of groups Gn with generator gn and order pn,
an n-bit prime.

Assumption 9.1 (Decisional Diffie-Hellman (DDH)). For any PPT A there is a negligible ε(n)
such that for all n ∈ N,

Pr
a,b∼Z∗pn

[A(gn, g
a
n, g

b
n, g

ab
n)]− Pr

a,b,c∼Z∗pn
[A(gn, g

a
n, g

b
n, g

c
n)] ≤ ε(n) .

The status of Assumption 9.1 is similar to the status of Assumption 8.1 and to the RSA
assumption. The best attacks that we know on Diffie-Hellman in general work by computing the
discrete logarithm. So, we would like to say that DDH holds if and only if the discrete logarithm is

20

hard to compute over G. However, there are certain specific prime-order groups G over which DDH
is known to be easy, but the discrete logarithm is thought to be hard. (These groups—specifically,
groups with bilinear maps—are actually quite useful for cryptographers, though we will not see
them in this class.) Nevertheless, we believe that DDH holds, e.g., in a large prime-order subgroup
of Z∗q . (DDH is not secure over Z∗q itself. E.g., we can solve DDH simply by checking whether the

last element in the tuple (g, ga, gb, gc) is a square, which it will be with 3/4 probability.)
So, how do we use this? Well, if Alice and Bob wish to communicate securely but they do not

share a random secret key, they simply run the above protocol. At the end of it, they do share
a secret key. This key is not random (it is uniquely determined by the transcript of the protocol,
which is public), but it is just as good. In particular, it is indistinguishable from a random key, even
to an adversary who can see Alice and Bob’s messages. So, they just use this secret key (interpreted
appropriately as a bit string) to communicate as they like using their favorite secret-key encryption
scheme.

In fact, more-or-less exactly this is what is done in practice. Diffie-Hellman key agreement
is used to secure roughly half of all internet traffic. The protocols used in practice are a bit
more involved than the one we have seen. Specifically, they use what is called authenticated key
agreement, in which at least one party also uses a signature scheme to sign the transcript of the
protocol. (Key agreement is most useful when we know who we are talking to. If Alice and Bob
just used the above protocol, Eve might be able to simply respond to Alice’s message with her
own message B′. If Alice and Bob had no way to authenticate, whatever secrets Alice planned on
sending to Bob will now get sent to Eve.)

9.1 ElGamal encryption

If Alice and Bob only want to exchange a single message, then they do not need to combine key
agreement with a many-message semantically secure secret-key encryption scheme. Instead, they
can just use the one-time pad. In fact, if you think about it, this actually yields a public-key
encryption scheme, in which Alice’s public key is her first message A := ga, and Bob’s ciphertext
consists of B := gb and his message padded with the shared secret key gab. This is known as
ElGamal encryption [ElG84], and it works as follows. It is easiest if we think of our message m as
itself a group element m ∈ G.

• Gen(1n): Sample a ∼ Zp and output (sk := a, pk := A = ga).

• Enc(pk,m): Sample b ∼ Zp and output c := (B := gb, C := Abm).

• Dec(sk, (B,C)): Output m = B−aC.

It is easy to see that this scheme is secure if (and only if) Assumption 9.1 holds. Specifically,
under Assumption 9.1, the ciphertext c := (B := gb, C := Abm) is indistinguishable from c :=
(B := gb, C ′), where C ′ is a uniformly random group element, independent of m.

More generally, any two-message key-agreement protocol implies a public-key encryption scheme,
where the public key is simply Alice’s (first and only) message A and the ciphertext is simply Bob’s
message B together with K ⊕m, where K is Alice and Bob’s shared secret key. And, any public-
key encryption scheme implies a two-round key-agreement protocol in which Alice samples a fresh
public key pk and sends it as her first message. Bob responds by sampling a uniformly random

21

string r and sending Enc(pk, r) to Alice. Alice decrypts, and they each output r as their shared
secret key. So, two-round key agreement is equivalent to public-key encryption.

Lattice-based crypto and Learning with
Errors

10 Bonus content: Decades later. . .

(Feel free to skip this section entirely and to jump to Section 11.)
The public-key cryptographic constructions that we have seen so far have all used number-

theoretic (or at least group-theoretic) ideas, and they were all discovered in the late 1970s and
early 1980s.

A couple of decades later (depending on how you count; see the history below), a very different
(and, I would argue, much simpler) method for building public-key cryptography was discovered:
lattice-based cryptography. (My own research is mostly related to lattice-based cryptography.
Specifically, I study the computational assumptions needed for security of lattice-based cryptogra-
phy and various related questions.) We will see that it turns out to be an extremely powerful tool.
Personally, I think that public-key encryption is magical. But, with lattice-based cryptography, far
more magical things are possible, like fully homomorphic encryption (as we will see!).

10.1 Aside: “Post-quantum cryptography”

One of the reasons that lattice-based cryptography is useful is because it is thought to be post-
quantum. That is, it is thought to be secure even against a polynomial-time adversary with a
quantum computer. In contrast, a quantum computer can efficiently factor large integers and
compute discrete logarithms [Sho97]. So, the current cryptography that powers the internet is not
post quantum and will be broken if someone builds a large-scale quantum computer. Progress in
building quantum computers has been slow, but there is progress, and this has led to calls for a
switch to post-quantum cryptography.

This “quantum insecurity” of the public-key cryptography that we currently use is really quite
surprising to me. Quantum computers are extremely useful for certain very specific tasks, such as
for simulating quantum systems. (E.g., if you want to know how a bunch of molecules are going to
interact in a setting in which quantum mechanics is directly relevant—in a drug or in some fancy
new material or whatever—quantum computers would be super useful!) But, the list of problems
that we think are hard classically but for which we know efficient quantum algorithms is extremely
short. The three main ones are, well, simulating quantum systems (e.g., predicting how certain
molecules will interact), factoring, and the discrete logarithm. If it were not for lattice-based
cryptography (and a few other less well-studied constructions that we will not see in this class),
one might have conjectured that there is something fundamental about public-key cryptography
that makes it susceptible to quantum attacks. But, it seems that what actually happened is that
we happen to have rested the security of the internet on the hardness of some of the very few
classically hard problems that happen to be broken by quantum computers.

Anyway, for this reason, lattice-based cryptography is in the process of being standardized, with

22

the intention of replacing many of the uses of factoring- and discrete-log-based cryptography over
the next decade or so. In other words, we’re going to be using lattice-based cryptography instead
of factoring- and discrete-log-based cryptography soon.

Though this post-quantum property is perhaps the most important aspect of lattice-based
cryptography from a practical perspective, in my opinion (which is not shared universally), it is
the least interesting aspect from a theoretical perspective. See [Nat22] if you’re interested to learn
more about the standardization process.

Aside: History

The timeline of lattice-based cryptography is rather complicated, with many fits and starts. Below,
we will just focus on the line of work started by Oded Regev (my advisor). (Oded is my advisor
and I am therefore strongly biased towards presenting his work over others. But, this is also the
standard presentation of lattice-based cryptography in an introductory class like this one.) But,
let me attempt to briefly recount some of the history here. (I will certainly fail to give a decent
description.)

Lattice-based cryptography traces its roots to “knapsack cryptosystems,” which are proposed
public-key cryptographic constructions whose security is meant to be based on the hardness of
variants of the Subset Sum and Knapsack computational problems. The original knapsack-based
scheme was proposed by Merkle and Hellman in 1978 [MH78] more-or-less around the same time as
RSA. It was then broken by Shamir in 1984 [Sha84]. (I.e., the scheme simply is not secure. Don’t
use it!) This was followed by a sequence of similar new constructions which were essentially all
broken. See [NS01].

These attacks on knapsack-based cryptography primarily worked by viewing the cryptosystems
from the perspective of geometric objects called lattices, and it was Miklós Ajtai (in 1996) who
originally had the idea of building a variant of knapsack cryptosystems that more directly incor-
porated lattices into the design [Ajt96]. Ajtai’s original scheme was only a secret-key encryption
scheme (presented simply as a one-way function), but it had the tremendous advantage of having a
worst-case to average-case reduction (which we will discuss below), which made it seem much more
likely to be secure than prior attempts. In 1997, Ajtai and Cynthia Dwork showed a lattice-based
public-key encryption scheme that also had a worst-case to average-case reduction [AD97]. Around
the same time (though published in 1998), Jeffrey Hoffstein, Jill Pipher, and Joe Silverman discov-
ered the NTRU cryptosystem [HPS98], a very different lattice-based public-key encryption scheme
that was much more efficient but lacked a worst-case to average-case reduction.

This sparked a flurry of works in the area. See Peikert’s survey for more [Pei16]. The modern
approach to lattice-based cryptography was invented by my advisor Oded Regev, who described
the Learning with Errors assumption (LWE) that we will see below. Later, Craig Gentry [Gen09]
showed that fully homomorphic encryption could be constructed from lattices! (Gentry’s original
scheme was based on rather complicated assumptions, which were later simplified. We will see a
relatively simple construction in this course!) Indeed, lattice-based cryptography has been shown to
be extremely powerful, with constructions of many crazy primitives like Identity-Based Encryption
(an encryption scheme in which your public key is just your name), attribute-based encryption (an
encryption scheme in which the person encrypting the message can designate a set of people who
can decrypt the message according to their “attibutes”—e.g., “can be decrypted by anyone who was
born in the summer, has taken CS 4830, but has not yet taken CS 6840”), functional encryption,
etc. See Peikert’s survey [Pei16].

23

Aside: GCHQ (probably) did not discover lattice-based cryptography

Recall that mathematicians and cryptographers working for the British spy agency GCHQ were
actually the first to discover public-key cryptography. In 1970, James Ellis conceived of the idea
of public-key cryptography, but did not propose a construction. In 1973, Clifford Cocks invented
RSA, and in 1974, Malcolm Williamson invented Diffie-Hellman key agreement. So, put succinctly,
they discovered both public-key cryptography “based on the discrete logarithm” and public-key
cryptography “based on factoring.” However, as far as we know, they never discovered lattice-
based cryptography. (Of course, this is all based on documents that were kept classified for 27
years. So, it is possible that they discovered other things that remain classified—perhaps including
lattice-based cryptography—in which case this description of history would be nonsense.)

Maybe it’s just me, but I find this to be fascinating because we performed the same experiment
twice and got the same result. Public-key encryption was developed twice independently. And
both times the first ideas that we came up with more-or-less the same—schemes with security
based roughly on the hardness of factoring or the discrete logarithm! This fact is quite striking
once one considers the (perhaps debatable) simplicity of lattice-based cryptography. Why was
it not discovered first? Is this a quirk of human history, a cultural phenomenon, or something
fundamental about public-key cryptography?

11 Linear equations DON’T lead to secure encryption schemes

Before we see an actual lattice-based cryptographic scheme, let’s first see a silly construction that
very much does not work.

Here’s the scheme. Let q be a prime number. (The fact that q is prime is just for simplicity.
One of the nice things about lattice-based cryptographic schemes is that the specific choices of
parameters don’t seem to matter too much. E.g., very little changes in the discussion below if we
take q to be an n-bit prime or a (log n)-bit composite number or anything in between.) The secret
key is a uniformly random vector s ∼ Znq . The public key is a uniformly random m×n matrix over
Zq, i.e. A ∼ Zm×nq , together with b := As mod q ∈ Zmq . We will later take m� n.

To “encrypt” a one-bit plaintext µ ∈ {0, bq/2c} given (A, b) (it should not be clear at all yet
why I took the plaintext to be either 0 or bq/2c—indeed, this should look quite strange), choose
t ∼ Zmq , set p := 〈b, t〉 mod q and c := p + µ mod q, and dT := tTA. The ciphertext itself is then
(c,d). I.e., we use p as a sort of one-time pad to encrypt µ, obtaining c, and we think of d ∈ Znq as
somehow providing some information about p that will allow for decryption.10

To decrypt using the secret key, compute p′ := 〈s,d〉 mod q. Notice that

p′ = 〈s,d〉 = dTs = tTAs = 〈b, t〉 = p mod q .

Then compute µ := c− p′ mod q.
So, this scheme is correct. The “only” teensy-weensy little problem is that it is horribly insecure.

There are many attacks, but perhaps the most obvious attack is simply to use linear algebra to

10Here, I am treating all of my vectors s, b, t,d as column vectors (because I am an a civilized person). So, tT and
dT are row vectors. It is common in the literature to not bother to write the transpose ·T and instead to just write
tA. The reader is then to understand that if a column vector appears to the left of a matrix, it should be treated as
a row vector—since no other interpretation is possible. But, here, I will use the more pedantic notation and write
tTA.

24

compute the secret key s from the public key, (A, b := As mod q). (If you have not seen linear
algebra modulo q before, suffice it to say that the same techniques that you learned over the real
numbers also work modulo q. E.g., Gaussian elimination works over Zq for prime q.)

12 NOISY systems of linear equations DO lead to secure cryptography—
Regev encryption

Now, let’s modify the above scheme until we make it both correct and secure.
The first idea is to add “noise” to b. I.e., instead of taking b := As mod q, we take b :=

As + e mod q, where e = (e1, . . . , em) ∈ Zmq and the ei ∼ χ are sampled independently from some
distribution χ over Znq . We write this succinctly as e ∼ χm.

More specifically, we will take χ to be “small,” i.e., to consist of small numbers. For example,
we can take the noise distribution χσ to be uniform in the interval [−σ, σ] for some parameter
σ � q. (The preferred distribution that we use for the error here is called the discrete Gaussian
distribution. This was the topic of my dissertation, and I am quite fond of this distribution. But,
we will stick to uniform noise in these notes for simplicity.)

If this were the only change that we made, then the scheme might be secure, but it would not
be correct! In particular, now we have

p := 〈b, t〉 = tTAs + 〈e, t〉 = p′ + 〈e, t〉 mod q .

So, we no longer have p = p′, which seems like a pretty big problem. But, suppose instead of
choosing t uniformly from all of Znq , we choose t to be “small” as well. We could take t ∼ χmσ , just
like e, but it’s easier to just take t ∼ {0, 1}m.

Then, as long as σ is small enough (e.g. σ < q/(10m) suffices), p− p′ will lie in a small interval.
In particular, c − p′ = µ + p − p′ mod q will lie in the interval, say, [−q/4, q/4] if µ = 0 but when
µ = bq/2c, it will never lie in this interval. (This is why we chose µ ∈ {0, bq/2c}. If we took, e.g.,
µ ∈ {0, 1}, then the noise would be significantly larger than µ, and we would be unable to decrypt.)
Therefore, we can decrypt by computing c− p′ mod q and checking whether it lies in this interval!
(Here, we are assuming that numbers modulo q are represented as integers between, say, −(q−1)/2
and (q − 1)/2 for convenience. If we instead represent elements in Zq as numbers between 0 and
q − 1, then µ = 0 yields numbers in [0, q/4] ∪ [3q/4, q − 1], which is less elegant.)

Here is the cryptosystem written out formally. This scheme is originally due to Regev [Reg09],
and it is often called Regev encryption. We assume that q = q(n), m = m(n), and σ = σ(n) <
q/(10m) are fixed public parameters (which, to be clear, depend on n). (For technical reasons, this
scheme is only secure if m > n log q, as we will see later.)

• Gen(1n): Sample A ∼ Zm×nq and s ∼ Znq , and e ∼ χmσ . Output sk := s and pk := (A, b :=
As + e mod q).

• Enc((A, b), µ ∈ {0, bq/2c}): Sample t ∼ {0, 1}m and output (dT := tTA mod q, c := 〈b, t〉 +
µ mod q).

• Dec(s, (d, c)): Output 0 if c− 〈s,d〉 mod q lies in the interval [−q/4, q/4] and q/2 otherwise.

25

12.1 (Decisional) Learning with Errors (LWE)

The above scheme is secure under what is known as the (Decisional) Learning with Errors As-
sumption, or Decisional LWE (also known due to Regev). Put succinctly, the Decisional LWE
Assumption is the assumption that the public key (A,As + e mod q) described above is pseudo-
random. The Decisional LWE problem is the computational problem that asks us to distinguish
(A,As+e mod q) from a uniformly random matrix of the same dimensions. There is also a Search
LWE problem, in which the goal is to find s, given (A,As + e).11

Formally, this is really a family of problems and assumptions, which depends on the parameters
σ = σ(n), q = q(n),m = m(n). In class, we will see a slightly different form of this assumption in
which the adversary can request as many samples (a, 〈a, s + e〉) as it wants. This is equivalent to
allowing the parameter m to be an arbitrarily large polynomial.

Definition 12.1 (Decisional LWE Assumption). For any PPT B, there exists negligible ε(n) such
that

Pr
A∼Zm×nq ,s∼Znq ,e∼χmσ

[B(A,As + e mod q) = 1]− Pr
A∼Zm×nq ,b∼Zmq

[B(A, b) = 1] ≤ ε(n) .

It is not immediately obvious that this assumption is sufficient (or even necessary!) to imply
the security of Regev encryption. Intuitively, this assumption tells us that the above scheme is
as secure as a modified scheme (which no longer has a valid decryption algorithm) in which the
public key is replaced by uniformly random (A, b). But, it is not immediately obvious whether the
plaintext µ could still be identified from the ciphertext (tTA, 〈b, t〉+ µ mod q), even if A and b are
uniformly random. For this, we need the Leftover Hash Lemma (which is often just called LHL).

Theorem 12.2 ((Special case of the) Leftover Hash Lemma [ILL89]). For ε ∈ (0, 1), A ∼ Zm×nq

with m ≥ n log q + 2 log(1/ε) + 100, and t ∼ Zmq , the distribution (A, tTA) is ε-close to the distri-
bution (A,u), where u ∼ Znq .12

We can now prove the security of Regev encryption.

Theorem 12.3. Regev encryption is semantically secure if Decisional LWE is true and, e.g.,
m > 2n log(q).

Proof. The proof is via a sequence of two games. We define Game 1 as the semantic security game
against Regev encryption. Game 2 is the same game, except that b is replaced by a uniformly
random element of u ∼ Zmq .

Notice that Decisional LWE is exactly the assumption that Game 1 is computationally indistin-
guishable from Game 2. (Formally, if there existed some PPT adversary B that had non-negligibly
larger advantage in Game 1 than in Game 2, then we could use such an adversary to break the

11The problem gets its name from its similarity to machine learning problems. In particular, you can view Search
LWE as a problem in which you are given many samples of the form (ai, 〈ai, s〉+ei mod q), and the goal is to “learn”
s.

12When we say that two distributions D1, D2 are ε-close, we mean that 1
2

∑
|Pr[D1 = x]−Pr[D2 = x]| ≤ ε, where

the sum is over all x in the support of the distributions D1, D2. (This sum is called the statistical distance between
D1 and D2.) Equivalently, for any (possibly computationally unbounded) adversary,

Pr[A(D1) = 1]− Pr[A(D2) = 1] ≤ ε .

So, statistical closeness means “statistically indistinguishable.”

26

Decisional LWE assumption by constructing B′ that takes as input (A, b), plays the role of the
challenger in the semantic security game with B with public key (A, b), and outputs 1 if and only if
B wins this semantic security game. I am being lazy here :). See Theorem 8.1 for a similar proof.)
Finally, the Leftover Hash Lemma (applied to the ((n+ 1)×m)-dimensional matrix A′ := (A,u))
tells us that Game 2 cannot be won with non-negligible probability, even by an unbounded adver-
sary. That is, in Game 2 the distribution of an encryption of 0 is ε-close to the distribution of an
encryption of 1, for ε := 2−(m−n log q−100)/2, which is negligible for m > 2n log q.

13 Bonus content: Search LWE and a search-to-decision reduction

As we mentioned above, there is another natural problem that seems related to decisional LWE,
but is not exactly the same: search LWE. This is the computational problem in which we are given
(A,As + e mod q), and the goal is to find s. I.e., it is the computational problem that asks us
to find the secret key given the public key. The Search LWE Assumption is then of course the
assumption that Search LWE is hard. (As above, this is really a family of assumptions, indexed by
q(n),m(n), σ(n).)

Definition 13.1 (Search LWE Assumption). For any PPT B there exists negligible ε(n) such that

Pr
A∼Zm×nq ,s∼Znq ,e∼χmσ

[B(A,As + e mod q) = s] ≤ ε(n)

(Of course, the above is vacuously true if there are very many choices of s′, e′ such that As+e =
As′ + e′ mod q, but one can verify that s and e are unique with high probability for m � n log q
and σ � q/2.)

The following theorem shows that the search and decision problems are equivalent (at least for
prime q ≤ poly(n)). In particular, this justifies us simply referring to “LWE” and not bothering to
specify whether we mean search or decision.

Theorem 13.2 (Informal, see [Reg09]). For prime q ≤ poly(n), the Decisional LWE Assumption
holds if and only the Search LWE Assumption holds.

Proof sketch. The idea behind the proof is as follows. Suppose that (A, b := As + e) are as in the
search LWE problem. Let r ∼ Zmq , and let Ri ∈ Zm×nq be the matrix whose ith column is r and
whose other columns are all zero. Then, consider (A′ := A+Ri, b

′ := b+ s̃ir = As+e+ s̃ir mod q)
for some s̃i ∈ Zq.

If s̃ = si, then
b′ = A′s + e mod q ,

so that (A′, b′) is distributed exactly as a valid LWE instance. On the other hand, if s̃ 6= si, then

b′ = A′s + e + (s̃i − si)r mod q

is uniformly random.
So, intuitively, we can use an adversary for the Decisional LWE oracle to “check” whether

si = s̃i. Since there are only polynomially many choices of si ∈ Zq, this allows us to find si in
polynomial time.

To make this actually work, one needs to worry about how to work with an adversary with only
small advantage, and one needs to deal with issues of independence. The easiest solution to the

27

first problem is to work with the versions of LWE that we defined in class, in which the adversary
may request as many samples of the form (a, 〈a, s〉+e mod q) as she wants, so that we can produce
arbitrarily many independent sets samples to feed to the Decisional LWE adversary. One can then
run the above “guess and check” procedure many times, and argue that by Chernoff bound, we will
eventually converge on the right answer with high probability. There are more clever ways as well.
To deal with independence issues, we must “rerandomize” the secret each time that we do this
“guess and check” procedure. I.e., we must replace (A,As + e mod q) by (A,A(s + s′) + e mod q)
for a fresh uniformly random vector s′ ∼ Znq .

14 Bonus content: Worst-case to average-case reductions

One of the most striking features of lattice-based cryptography are the worst-case to average-case
reductions. Notice that LWE is an average-case problem. That is, it is defined in terms of a
distribution of (A,As + e mod q). And, the LWE Assumption says that it is hard to solve this
problem on the average over this distribution.

Of course, all of the assumptions that we have seen so far have been like this. E.g., Rabin’s
trapdoor function is only secure if it is hard to factor N = pq on the average, for p, q sampled
from a certain distribution. But, one could imagine a world in which there is no polynomial-time
algorithm that factors all integers N , but factoring numbers from this particular distribution is easy
on the average. Indeed, in practice, choosing the right distribution over p, q is non-trivial because
of specialized factoring algorithms that work for some choices of p, q but not others. In some sense,
such issues seem inevitable, since we have to use randomness in choosing our keys, which inevitably
means we have to choose some distribution.

We might similarly worry that, while it might be difficult to find s given (A,As + e mod q)
for some choices of A, s, q, and “small” e, it might not be hard on the average for our particular
choice of q. We do not quite know how to rule this out completely, but we do have very strong
evidence to suggest that this is not the case. In particular, Regev showed that solving LWE in the
average-case is at least as hard as solving a worst-case variant of LWE.

For a basis B ∈ Zm×n, let λ1(B) := min{‖Bz‖ : z ∈ Zn, z 6= 0}. Computing λ1(B) is known
as the Shortest Vector Problem (SVP), and it was shown by Ajtai to be NP-complete [Ajt98].
(People had tried for about 20 years to prove that SVP was NP-hard before Ajtai finally succeeded.)
Approximating λ1(B) up to some factor of γ ≥ 1 is known as, well, γ-approximate SVP, and it
is thought to be hard even for very large approximation factors γ. (The fastest polynomial-time
algorithm achieves γ = 2n log logn/ logn, so nearly exponential in n.) A closely related problem, which
looks more like LWE, is the γ-Bounded Distance Decoding problem (γ-BDD), in which the input
is B ∈ Zm×n and t ∈ Zn, and the goal is to find z ∈ Zn such that ‖Bz − t‖ is as small as possible,
under the promise that there exists a z with ‖Bz − t‖ < λ1(B)/γ.

Regev proved that LWE is at least as hard as these worst-case problems! This provides very
strong evidence for the LWE Assumption! (It is not hard to show that the converse is true as
well. That is, if you can solve γ-BDD or γ-SVP, then you can solve LWE. However, the specific
approximation factors γ are not the same. So the problems are “equivalent up to a loss in the
approximation factor.”)

Theorem 14.1 ([Reg09]). For any σ >
√
n, there is a reduction from the worst-case problems

γ-SVP and γ-BDD to the average-case (Decisional) LWE problem, for γ = poly(n) · (q/σ).

28

Notice that the approximation factor γ depends on “noise rate” σ/q. This seems reasonable:
as the noise rate goes down, the LWE problem becomes easier, and we are therefore only able to
use an LWE solver to solve an easier problem.

In fact, Regev’s original reduction required a quantum computer and only worked for prime
q ≤ poly(n). But, this was improved to a fully classical reduction for all q in a sequence of works
(e.g. [Pei09, BLP+13]).

Two notes

15 A note on efficiency and hybrid encryption

In practice, schemes like ElGamal, Goldwasser-Micali, and RSA are typically not used to encrypt
long messages. The problem is that they are very inefficient. Goldwasser-Micali requires us to do
one exponentiation per bit, and the version of RSA that we saw (using a hardcore predicate) has
the same issue. ElGamal still requires us to do two exponentiations for every n bits or so. This is
very expensive for large messages.

Instead, in practice, we almost always use a public-key primitive like public-key encryption
or key agreement to create a shared secret key (as we already described in the section on key
agreement). Then, we use some secret-key scheme to communicate. This is much faster, since the
secret-key schemes that are used in practice (not the ones we’ve seen in class!) are very efficient.
E.g., you have almost certainly downloaded videos that are encrypted under some secret-key scheme
like AES, but you probably do not download ElGamal-encrypted videos.

A particular form of this is known as hybrid encryption, which works as follows. Let PEnc be
some public-key encryption algorithm and SEnc be some secret-key encryption algorithm. If Bob
wishes to send a long file m to Alice using her public key pk, he can simply sample a fresh key sk∗

for SEnc and send Alice c := (PEnc(pk, sk∗),SEnc(sk∗,m)). I.e., he uses the public-key scheme to
encrypt the secret key sk∗ of a secret-key scheme, and then he uses the secret-key scheme to do
most of the heavy lifting.

Even more cleverly, Alice and Bob can use public-key encryption once in order to establish a
shared secret key sk∗. They can then communicate as much as they like using secret-key encryption.

16 A note on homomorphism

All of the public-key encryption schemes that we have seen so far are homomorphic in some way.
In other words, if we are given two encryptions Enc(pk,m1) and Enc(pk,m2), we can compute a
valid encryption of some function f(m1,m2) of the two messages, without knowing m1 or m2 (or
the secret key).

For example, take two ciphertexts in the Goldwasser-Micali scheme, c1 := ym1x21 mod N and
c2 := ym2x22 mod N , where m1,m2 ∈ {0, 1}. I claim that c∗ := c1c2 mod N = ym1+m2(x1x2)

2 mod
N is a valid encryption of the ciphertext m1 ⊕m2. To see this, first notice that if m1 = m2 = 0,
then this is clearly true, since then c∗ = ym1+m2(x1x2)

2 = (x1x2)
2 mod N is clearly a quadratic

residue. On the other hand, if m1 6= m2, then c∗ = y(x1x2)
2 mod N is clearly an encryption of one.

Finally, if m1 = m2 = 1, then ym1+m2(x1x2)
2 = y2(x1x2)

2 = (yx1x2)
2 mod N is again a quadratic

29

residue. So, given an encryption of m1 and m1 and m2, we can create a valid encryption of m1⊕m2

without ever knowing m1 or m2.
This is both useful and troublesome. It is useful in some applications. E.g., maybe you can

imagine how one might use this for a coin-flipping protocol? It is also quite troublesome. E.g., it
does not seem great if an adversary Eve can change Bob’s message from “YES!” to “Absolutely
not!” (You can fix this by having Bob sign the message, but this requires Bob to have a secret
signing key, and Alice to know the corresponding verification key.)

Similarly, ElGamal is homomorphic. Specifically, given c1 := (gb1 , Ab1m1) and c2 := (gb2 , Ab2m2),
we can compute c∗ := (gb1+b2 , Ab1+b2m1m2) by simply multiplying the corresponding parts of the
two ciphertexts. Clearly, c∗ is a valid encryption of m1m2.

In the next two lectures, we will see a very extreme version of this property. In particular, we
will see a fully homomorphic encryption scheme, i.e., a scheme in which it is possible to compute
a valid encryption of f(m1,m2) for any efficiently computable function f given only Enc(pk,m1)
and Enc(pk,m2)! This is extremely useful.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A Public-Key Cryptosystem with Worst-
Case/Average-Case Equivalence. In STOC, pages 284–293, 1997.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions.
In STOC, 1998.

[AM09] Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring.
In EUROCRYPT, 2009. https://eprint.iacr.org/2008/260.pdf.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Clas-
sical hardness of Learning with Errors. In STOC, 2013. http://arxiv.org/abs/1306.
0281.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 1976.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO, 1984.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In STOC, 1982.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In ANTS, pages 267–288, 1998.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions. In STOC, 1989.

30

https://eprint.iacr.org/2008/260.pdf
http://arxiv.org/abs/1306.0281
http://arxiv.org/abs/1306.0281

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in Com-
plexity Theory Conference, 1995.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4),
1978. http://doi.acm.org/10.1145/359460.359473.

[MH78] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks.
IEEE Transactions on Information Theory, 24(5):525–530, September 1978.

[Nat22] National Institute for Standards and Technologies (NIST). Selected algorithms
2022 - Post-quantum cryptography, 2022. https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.

[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In CaLC,
pages 146–180, 2001.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case Shortest Vector Problem.
In STOC, 2009.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016.

[Rab79] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factor-
ization. Technical report, Massachusetts Institute of Technology, 1979. 01432.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2), 1978.

[Sha84] Adi Shamir. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryp-
tosystem. IEEE Trans. Inform. Theory, 30(5):699–704, 1984.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

A Computing square roots modulo a prime

Here, we prove that it is possible to compute square roots efficiently modulo a prime q. I.e., given
a prime q and y ∈ QRq, we can efficiently compute x such that x2 = y mod q. (As a side note,
notice there are two solutions to this equation—x and −x.)

The high-level idea is best illustrated in the special case when q = 4m+ 3 for some integer m.
In this case, the point is that “m + 1 is kind of an inverse of 2 modulo q − 1 = 4m + 2,” in the
sense that 4 · (m + 1) = 2 mod q − 1.13 So, we might expect that if y = x2 mod q, then raising y
to the (m+ 1)st power should give us a square root, i.e., ym+1 = x2(m+1) mod q might not equal x

13Notice that, 2 does not have an inverse modulo q − 1, since 2 is not coprime to q − 1. So, there is no element x
such that 2x = 1 mod q − 1. However, there is an element x such that 4x = 2 mod q, which is pretty close!

31

http://doi.acm.org/10.1145/359460.359473
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

(because 2(m+ 1) certainly does not equal 1 + k(q− 1) for some integer k), but maybe it’s always
a square root?

Indeed, in this case (ym+1)2 = y mod q, i.e., ym+1 mod q is a square root is a square root of of
y modulo q. To see this, recall that the order of the group Z∗q is q−1, and therefore for any z ∈ Z∗q ,
zq−1 = 1 (i.e., the order of the element z divides the order q − 1 of the group Z∗q). Therefore, if
y = x2 mod q for some x ∈ Z∗q , then

(ym+1)2 = x4m+4 = x4m+2 · x2 = y mod q .

as needed. (Notice that we never guaranteed that ym+1 = x mod q. It is of course possible that
ym+1 = −x mod q as well.)

Now, let q − 1 = 2sk for some odd k. Of course, such a decomposition in terms of s and k
always exists (and we can find it efficiently). Notice that, if yk = 1 mod q, then by an argument
that is more-or-less identical to the above, y(k+1)/2 mod q is a valid square root of y modulo q.
More generally, we will show how to find z ∈ Z∗q such that

ykz2 = 1 mod q ,

so that (y(k+1)/2z)2 = y mod q.
Let w ∈ Z∗q be a quadratic non-residue, i.e., w is an element that cannot be written as a square

modulo q. (Such a w can be found efficiently by sampling a random w ∈ Z∗q and recalling that w is

a quadratic non-residue if and only if w(q−1)/2 = −1 mod q. So, we can just guess and check until
we find such a w.) Let W := wk mod q, and notice that W satisfies W 2s−1

= w(q−1)/2 = −1 mod q.
Set a = 0, and do the following repeatedly until you output something. Let 0 ≤ s′ ≤ s − 1

be minimal such that (ykW 2a)2
s′

= 1 mod q. (Notice that s′ ≤ s − 1 precisely because y is a
square, so that y2

s−1k = x2
sk = xq−1=1 mod q. Furthermore, notice that we can compute such an

s′ efficiently.) If s′ = 0, then we take z = W a mod q, and we are done. Otherwise, add 2s−s
′−1

(which is an integer) to a and repeat the loop.
To see that this works, we claim that s′ always decreases by at least one in each step, so that

the algorithm terminates after a total number of loops bounded by s ≤ log q. (One can actually
view this algorithm as identifying all the 1s in the binary representation of a, starting with the

most significant digits.) In other words, we claim that (ykW 2a+2s−s
′
)2
s′−1

= 1 mod q. Indeed, first

notice that, before we update a, (ykW 2a)2
s′−1

= −1 mod q, since by definition this is a square root
of 1 that is not 1. Therefore,

(ykW 2a+2s−s
′
)2
s′−1

= −1 ·W 2s−1
= 1 mod q ,

as needed.

32

	Minicrypt vs. Cryptomania
	Public-key encryption (also known as magic)
	Unpacking the definition
	Cryptomania is hard to find

	Public-key encryption from trapdoor permutations
	Using hardcore predicates of trapdoor permutations to encrypt

	Rabin's trapdoor function (aka squaring)
	A formal proof of security for Rabin's function

	RSA
	The RSA trapdoor permutation, formally
	An RSA-based encryption scheme

	Trapdoor predicates
	Quadratic residuosity—first attempt and the Legendre symbol
	The Jacobi symbol

	Goldwasser-Micali—quadratic residuosity done right
	Diffie-Hellman key agreement
	ElGamal encryption

	Bonus content: Decades later…
	Aside: ``Post-quantum cryptography''

	Linear equations DON'T lead to secure encryption schemes
	NOISY systems of linear equations DO lead to secure cryptography—Regev encryption
	(Decisional) Learning with Errors (LWE)

	Bonus content: Search LWE and a search-to-decision reduction
	Bonus content: Worst-case to average-case reductions
	A note on efficiency and hybrid encryption
	A note on homomorphism
	Computing square roots modulo a prime

