Introduction to Analysis of Algorithms Notes on Cryptography
CS 4820/5820, Spring 2024 May 2024

In CS 4820 we strive to teach you to distinguish between problems that have efficient algorithms
and problems that are computationally hard, either conjecturally (in the case of NP-hard problems)
or unconditionally (in the case of undecidable problems). Cryptography is an arena where both
types of problems meet up, with fruitful consequences.

For thousands of years, people have attempted to use ciphers for secret communication. The history
of cryptography has been a cat-and-mouse game between code makers coming up with creative
methods of encoding messages, and code breakers coming up with even more creative ways of
decoding them. The past century has been the most eventful one in the history of cryptography,
with computers enabling new modes of secure communication that were previously unimaginable.

In order for encryption to be secure, the process of decrypting a message must be easy for a receiver
who has the requisite secret key, but it must be hard for an attacker who lacks the key. But how
should one interpret the terms “easy” and “hard” in the foregoing sentence? In these lectures we’ll
talk about two interpretations.

e Statistical notions of security formalize the notion that the attacker’s inability to break the
code stems from randomness in the process of generating the secret key and using it to
encrypt messages, combined with the attacker’s lack of information about the key.

e Computational notions of security formalize the notion that the attacker’s inability to break
the code stems from the computational hardness of the code-breaking task.

Statistical security guarantees are stronger than computational ones, since they persist even if the
attacker applies unlimited computational resources to the challenge of breaking the code. On the
other hand, as we’ll see, achieving perfect statistical security is often impractical, which motivates
the computational definition.

1 Shannon security and one-time pads

Claude Shannon, the founder of information theory, formalized one notion of statistical security as
follows.

Definition 1.1. An encryption scheme with message set M is specified by giving a set of pos-
sible ciphertexts (C), a set of possible keys (%), and three (possibly randomized) algorithms
Gen, Enc, Dec, such that:

1. Gen takes no input and outputs a key k = Gen();

2. Enc: K x M — C takes a key and message, and it outputs the encryption of the message,
¢ = Enc(k, m).

3. Dec : K xC — M takes a key and ciphertext, and it outputs the decryption of the ciphertext,
m = Dec(k, ¢).

4. The decryption operation with key & inverts the encryption operation with the same key.

Vke KVme M Dec(k, Enc(k,m)) = m.

The encryption scheme is Shannon secure if the combination of key generation and encryption
results in the same distribution over ciphertexts regardless of the message.

VYmy,m; € M YceC Pr [Enc(k,my) = c| =) PGrl [Enc(k, my) = c].
«—@Gen

k—Gen

Shannon specified a simple construction that fulfills this security property: the one-time pad. One-
time pad encryption schemes have the following characteristics.

1. The sets M, C, K all have the same number of elements, N.

2. For any fixed k € K, the operation m — Enc(k,m) is a bijection between M and C, and
Dec(k, -) is the inverse of this bijection.

3. For any fixed m € M, the operation k — Enc(k, m) is a bijection between K nd C.

4. The key generation operation, Gen, samples k uniformly at random from K.

For example, if N = 2" then we could take M = K = C = {0, 1}", and the encoding and decoding
functions could be defined using the bitwise XOR operation:

Enc(k,m) = Dec(k,m) = k & m.

Alternatively, for any N, we could take M = K = C to be the set Z/(N) of integers modulo N,
with encoding defined by addition and decoding defined by subtraction:

Enctk,m) = m + k, Dec(k,m) = m — k.

Both of these would be considered one-time pad schemes. It is an exercise to verify that one-time
pads satisfy Shannon security because the ciphertext is uniformly distributed over C, regardless of
the message contents.

The Achilles’ heel of Shannon’s one-time pad is its enormous key size. Picture a spy satellite
relaying terabytes of imagery to Earth. In order for the communication from the satellite to obey
Shannon security, it would need to be launched into orbit with a hard drive containing terabytes of
secret-key information. Worse yet, once the satellite had relayed an amount of data equal to the size
of its secret key, the secrecy of its subsequent transmissions could not be assured. Unfortunately,
encryption schemes that are Shannon secure must inevitably use large keys.

Lemma 1.1. Any encryption scheme satisfying Shannon security must use a key set with at least
as many elements as the message set.

Proof. Consider some key kj such that Gen outputs k, with positive probability, and some cipher-
text ¢ in the range of Enc(ky, -). In other words, there is a message m such that Enc(ky, my) = co.
Then, by Shannon security, for every m; € M we must have

Pr [Enc(k,m;)] = co > 0.

k—Gen

Since Dec(k, Enc(k,m;)) = m;, we also have

Pr [DeC(k, Co)] =m > 0.
ke—Gen
Hence, for every m; € M there exists some k € K such that Dec(k, ¢y) = m;. In other words, there
is a surjection from K to M defined by k — Dec(k, ¢y). The existence of a surjection from K to
M implies that there are at least as many keys as messages. O

To sum up, in this section we’ve learned two important lessons about secure communication.

e If two parties share an n-bit secret key that they can use as a one-time pad, then one of them
can send an n-bit message to the other with perfect secrecy: an attacker with no information
about the secret key can learn nothing whatsoever about the message, even if they intercept
the ciphertext and expend unlimited computational resources in trying to decrypt it.

e Conversely, in order to achieve such a strong information-theoretic guarantee of secrecy, it
is necessary to share a secret whose size (in bits) is as large as the message itself. This mo-
tivates the study of cryptographic schemes that are secure against weaker, computationally
bounded, attackers.

2 One-way functions

A one-way function is a function that is easy to compute but hard to invert. This turns out to
be extremely useful for building cryptographic schemes that are secure against computationally
bounded attackers. In this section we’ll present the basic definition of a one-way function, and
we’ll present a construction of a family of functions that are believed to satisfy the definition. In
later sections we’ll see how to use this family of functions to accomplish some cryptographic goals
that sound miraculous when first encountered.

e Key exchange: Two parties, Alice and Bob, exchanging messages “in the clear” on a pub-
lic channel visible to attackers, can agree on a shared secret key without (computationally
bounded) attackers gaining knowledge of the key.

e Public-key cryptography: Alice can publicize an encoding function Enc to be used for send-
ing messages to her. Using a secret key Alice can decode messages encoded using Enc. A
(computationally bounded) attacker who doesn’t know the secret key gains no information
about the messages being sent to Alice.

Definition 2.1. A one-way function is a function f : {0,1}* — {0, 1}* satisfying the following
properties.

1. f is easy to compute: There is a (potentially randomized) algorithm to compute f(x) run-
ning in time poly(|x|), where |x| denotes the number of bits in x.

2. f is hard to invert: For any attacker using a (potentially randomized) polynomial-time
algorithm A and any constant ¢ < oo, if:

e x is sampled uniformly at random from {0, 1}";
e f(x)is computed and sent to the attacker;

o the attacker attempts to invert f by calculating x" = A(0", f(x));

then Pr[f(x") = f(x)] < 1/n° for all sufficiently large n.

The hard-to-invert property asserts that an attacker who attempts to invert f using a randomized
polynomial-time algorithm has only negligible probability of succeeding. Here, the definition of
“negligible” is that the probability of success, as a function of the message length x, tends to zero
faster than any inverse-polynomial function of n.

There are a couple of things that seem strange about the second part of the definition when one
first encounters it.

o Why focus on Pr[f(x") = f(x)] rather than Pr[x" = x]? The answer is that if the purpose
of the one-way function were only to conceal the value of x, a constant function f(x) = 0
would trivially do that.

o Why does the attacker compute a two-variable function A(0", f(x)) rather than a one-
variable function A(f(x))? The unary input 0" is an artificial construct that just ensures
the attacker’s algorithm is allowed to run in poly(n) time, even if | f(x)| < n.

Before presenting an example of a (conjecturally) one-way function, we offer the following re-
marks.

1. If P = NP then every function that is easy to compute is also easy to invert. Given the value
f(x) for some x € {0, 1}", the search for an x’ such that f(x") = f(x) reduces to solving a
sequence of O(n) decision problems, each of the form, “Here is a string z € {0, 1}* for some
k < n. Does there exist a string x" € {0, 1}" such that f(x") = f(x) and the first k bits of
x" match with z?7” Each of these is an NP decision problem, so if P = NP then we have a
polynomial-time algorithm to invert f.

2. Since we don’t yet know how to prove P # NP, constructing a provably one-way function is
way beyond the reach of current techniques.

3. The next-best thing would be a construction that provably satisfies the definition of one-way
function under the assumption that P # NP. We still don’t know any such construction, but
progress in the past five years has made some cryptographers optimistic that the long-sought
goal of basing cryptography on NP-hard functions may soon be within reach.

4

Example 2.1 (Factoring). Our first example of a one-way function could be more accurately clas-
sified as an “instructive non-example.” Consider the multiplication function, m(a, b), which takes
two integers a, b > 1 each having, say, n/2 binary digits, outputs their product m(a, b) = a - b. This
function is easy to compute. In fact, earlier in this course you learned an algorithm, based on the
Fast Fourier Transform, that computes the product of two n/2-bit integers in time O(nlog® n). The
fastest known multiplication algorithm improves this running time to O(nlog n).

On the other hand, inverting the multiplication function is tantamount to finding a non-trivial fac-
torization of a given composite number. The fastest known integer factorization algorithm on a
classical computer requires 200" time to factor an n-bit integer. (Peter Shor famously found an
integer factorization algorithm that runs in polynomial time on a quantum computer. At present,
quantum computing technology has not progressed to the point where Shor’s algorithm could be
run on inputs of non-trivial size.)

Thus, given our present state of knowledge, multiplication is a function that is easy to compute but
hard to invert. However, it doesn’t satisfy Definition 2.1 because easy-to-factor integers are too
plentiful: if we sample x = (a, b) at random and compute f(x) = m(a,b) = a - b, it’s often easy to
find an x’" such that f(x") = f(x). In order for Definition 2.1 to be satisfied, we need the probability
of finding such an x’ to be negligible. The situation is summarized by saying that multiplication is
(believed to be) a weakly one-way function, but not a one-way function.

Example 2.2 (discrete logarithm). Our next example of a one-way function is based on modular
exponentiation. Given positive integers g and N, the exponential function f(x) = g* (mod N) is
; 1,2 ,4 ,8 2t
easy to compute. Letting £ = |log, x] one first computes g°, g~, g%, &°,...,&~ (mod N) by repeated
squaring. Then, using the binary representation of x to write it as a sum of at most £ powers of 2 in

. . 14
the range {1,2,...,2¢}, we see that g* is a product of at most £ numbers in the set {g', g%,..., g% }.
Thus, computing g* (mod N) reduces to at most 2¢ instances of integer multiplication, each of
which can be computed in near-linear time as noted earlier.

The inverse of the function f(x) = g* (mod N) is called the discrete logarithm function (with base
g and modulus N) and is believed to be a genuine one-way function when N is prime and g is a
so-called primitive root, a number whose first N — 1 powers are all distinct, mod N.

2.1 Sophie Germain primes and the discrete logarithm

To continue working with the discrete logarithm, it will be useful to refer to the following defini-
tion.

Definition 2.2. The order of g modulo N is the smallest positive exponent d such that g¢ =
(mod N).

Observation 2.1. If d is the order of g modulo N then the powers of g (mod N) form a periodic
sequence with period length d. To see that this is the case, observe that the identity g* = g*
(mod N) holds, for all x > 0, by induction on x. The base case x = 0 is Definition 2.2, and for the
induction step one assumes g?** = g (mod N) and multiplies both sides of the congreuence by g
to conclude g***! = g**! (mod N).

In constructing key exchange protocols and public-key cryptosystems, we will be working with
the discrete logarithm problem when N is a large prime number, and the order of g modulo N is
also a large prime number. Fortunately, there is a plentiful source of examples.

A Sophie Germain prime is a prime number p such that g = 2p + 1 is also prime. While there is
no known proof, at present, that the set of Sophie Germain primes is infinite, it is conjectured that
a random n-bit integer is a Sophie Germain prime with probability at least ¢/n?, for some constant
¢ > 0 not depending on n. The numerical evidence based on small values of n is consistent with
this conjecture.

Lemma 2.1. When p is a Sophie Germain prime and q = 2p + 1, then the order of 4 modulo q
equals p.

Proof. We’ll start by proving 4” = 1 (mod g). Observe that 4” = 2?7 = 297!, Using the binomial

theorem we have .
1 1
-1 _ — | ——

ez =330 3()

where the final equation follows because of the identity (7) = (q‘li), which reveals that the last
p+1 terms of the sum are equal to the first p + 1 terms in reverse order. Now, from the formula
(‘?) = G (q B and the fact that ¢ is prime, we see that () 0 (mod ¢g) except when i € {0, g}. Hence,

1

only the first term of the sum on the right is non-zero, and 47 = 297! = (g) =1 (mod g), as claimed.

Now, let d denote the order of 4 modulo g. We claim, by induction on k > 0, that 4 = 1 (mod q)
if and only if k is divisible by d. The base cases 1 < k < d follow from the definition of d, which
requires that 4 = 1 (mod ¢) but that 4 # 1 (mod ¢) for 1 < k < d. For the induction step,
suppose k > d and use the periodicity relation 4 = 44 (mod ¢). By the induction hypothesis,
44 =1 (mod ¢) if and only if k — d is divisible by d, which happens if and only if k is divisible
by d.

Since we have previously shown that 4” = 1 (mod ¢g), we may conclude that the order of 4 modulo
g is a divisor of p. But p is prime, so the order of 4 modulo ¢ is either 1 or p. Since 4! # 1
(mod ¢g), we know the order of 4 cannot be 1, so it must equal p as claimed. O

3 Diffie-Hellman Key Exchange

Recall the one-time pad encryption scheme of Section 1. If two communicating parties, Alice and
Bob, can agree on a shared n-bit secret key without an attacker, Eve, gaining any information about
the key, then Alice and Bob can use the secret key as a one-time pad to communicate » bits to one
another in perfect secrecy.

Suppose now that Alice and Bob are not able to meet in private to agree on their secret key. Instead,
all of their communication must take place on a public channel, with Eve observing every bit of
information they send to one another. In this section we will present a protocol by which they can
reach agreement on a secret key, yet in order to gain information about their secret key an attacker
would have to be able to solve (a lightly strengthened version of) the discrete logarithm problem.

6

Here is the protocol. Let g be a prime number, and let g be a positive integer such that the order of
g modulo ¢ is another prime number, p. If p is a Sophie Germain prime and g = 2p + 1, then we
have seen that we can take g = 4 for example. Finally, let [p] denote the set {0, 1,..., p — 1}.

1. Alice generates secret key a € [p], uniformly at random, and sends A = g* (mod g) to Bob.
2. Bob generates secret key b € [p], uniformly at random, and sends B = g (mod ¢) to Alice.
3. They both compute the shared secret key k = g (mod ¢).

e Alice computes k using the formula £k = B* (mod ¢g). This is possible because she
knows a, and she learned B from Bob.

e Bob computes k using the formula k = A’ (mod ¢). This is possible because he knows
b, and he learned A from Alice.

Once Alice and Bob have shared key k, they can use it as a one-time pad in an encryption scheme
with
M =C =K = {powers of g (mod g)}.

Note that the size of the message set is p, by our assumption that g has order p modulo ¢. Thus, at
the cost of performing a set-up phase that involves sending 2[log, ¢] bits, they are able to commu-
nicate a secret message of length |log, p]. When g = 2p + 1, this means the communication cost
of the set-up phase exceeds the number of message bits transmitted by a factor of 2, plus a small
constant number of additional bits.

We have described how to implement the Gen() functionality of the encryption scheme using
communication over a public channel. The encoding function is Enc(k,m) = k - m (mod ¢), and
the decoding function is Dec(k, c) = k*~! - ¢ (mod ¢). Decoding with key k inverts encoding with
key k, because if we write k = g’ for some non-negative integer j then

Dec(k, Enc(k,m)) = k"' k-m=k" -m= (g’ -m=(g’)Y -m=m (mod q).

How do we know this is computationally secure? We don’t. If one assumes modular exponenti-
ation is a one-way function then a computationally bounded eavesdropper, Eve, would have only
negligible probability of recovering Alice’s or Bob’s secret key, a or b. It is difficult to picture an
algorithm for computing g (mod ¢) given the values of g% and g* (mod ¢g), without knowing one
of {a, b}. However, that doesn’t mean we know how to prove the security of the Diffie-Hellman
key exchange protocol from the assumption that the discrete logarithm is computationally hard.
Instead, the assumption that underlies the security of Diffie-Hellman key exchange is called the
decisional Diffie-Hellman (DDH) assumption. It concerns the problem of distinguishing ordered
triples of the form (g%, g”, g**) (mod g) from ordered triples of the form (g%, g*, g) (mod ¢), when
q is a large prime and the order of ¢ modulo ¢ is another large prime p. If a, b, c are sampled
uniformly at random from [p], the DDH assumption is that for any efficiently computable test 7,
the probabilities Pr[r(g% g°, g?*) = 1] and Pr[7(g% g°, g¢) = 1] differ by less than &(n), where
n = log,(p) and &(n) tends to zero faster than any inverse-polynomial function of n. In other
words, the DDH assumption is basically just a way of rephrasing the assertion that Diffie-Hellman
key exchange is computationally secure.

	Shannon security and one-time pads
	One-way functions
	Sophie Germain primes and the discrete logarithm

	Diffie-Hellman Key Exchange

