
Introduction to Dynamic Programming∗

Michael P. Kim†

CS 4820 — Spring 2025

1 Case Study: Max Weight Independent Set on a Path

Given a graph G = (V,E), a subset of the vertices S ⊆ V is called an independent set if no two
u, v ∈ S form an edge in the graph; i.e., (u, v) ̸∈ E. The maximum weight independent set problem
asks the following question:

Given: a graph G = (V,E) with non-negative vertex weights W = {wu}u∈V
Find: the independent set S ⊆ V that maximizes the total weight WS =

∑
u∈S wu

As we’ll see later in the course, the maximum independent set problem on general graphs (even
without weights) cannot be solved efficiently.1 For today’s lecture, we focus on the setting where
the input is a path graph—namely, a connected graph with degree at most 2.

Given: a path graph P = (V,E) with non-negative vertex weights W = {wu}u∈V
Find: the independent set S ⊆ V that maximizes the total weight WS =

∑
u∈S wu

For instance, consider the path graph below. For notational convenience (here and throughout the
lecture) assume that the vertices are labeled with {v1, . . . , vn}, increasing from left to right.

In this instance, the maximum independent set is S = {v1, v3} with a weight of w1 + w3 = 8.
Another candidate independent set is S′ = {v2, v4} and has weight w2 +w4 = 6. Of course, in this
instance, we can convince ourselves that S is the max independent set by trying all subsets of the
vertices. But, for larger instances of path graphs, can we do better?

∗Notes and lecture heavily influenced by Tim Roughgarden’s offering of CS 161 at Stanford University.
†Cornell University, mpk@cs.cornell.edu
1Unless P = NP. That is, computing a maximum independent set in general graphs is NP-Hard.

1



2 Greedy Approach

So far in 4820, the key algorithm design paradigm we’ve seen is greedy. Can we design a greedy
algorithm for the problem at hand? Let’s consider a few candidate “priority” functions.

Perhaps the first greedy algorithm would process vertices in order of weight. That is, sort the
vertices by wu, then for each vertex u ∈ V , add u to S if u does not have a neighbor in S already.
While natural, it is not hard to construct an instance where this greedy heuristic fails.2

A second greedy algorithm might process the vertices simply in order specified by the path. Starting
from the left (or perhaps the right), add in vertices as long as they don’t contradict the independence
condition. This strategy can be seen to be quite limited, always returning an independent set with
alternating vertices. Again, you should think about how to construct an instance on which this
strategy fails.3

While these greedy heuristics can be made to work on the unweighted path graphs, the weights
seem to introduce a challenge that thwarts greedy approaches. In particular, it is not clear that
we can make our decisions myopically and irrevocably. It seems that we need a more global view
of the solution space.

3 Dynamic Programming

In the remainder of the lecture, we’ll explore a new paradigm for algorithm design, called dynamic
programming, that implicitly explores all possible solutions. Key to this paradigm is that we search
the complete solution space implicitly : enumerating all possible solutions, of course, would take
exponential time. We will show that, for problems like the weighted independent set problem on
path graphs, the value of a given solution can be expressed in terms of the value of partial solutions.
This property—that full solutions can be decomposed into partial solutions—is the quintessential
aspect of a problem that often suggests a dynamic programming algorithm.4

3.1 Optimal Solutions on the Path Graph

To begin, let’s consider a hypothetical optimal solution to the problem—an independent set S ⊆ V
of the path’s vertices with maximum weight wS—and see if we can understand properties that the
solution must satisfy. Here is one such property.

Lemma 3.1. Consider a maximum weight independent set S ⊆ V . The final vertex vn in the path
graph is either in the independent set, or not. That is, vn ∈ S or vn ̸∈ S.

This lemma needs no proof: we are simply observing the trivial fact that every vertex is either in
or not in the subset S and applying it to the final vertex. Despite the triviality of this lemma, it

2Consider a path with three vertices, where the middle vertex has maximum weight, but the two ends sum to
more than the middle.

3Construct a four vertex path, where the maximum independent set consists of the outer two vertices.
4You may wonder what aspects of the “programs” we write here are “dynamic.” In truth, the terminology

“dynamic programming” has nothing to do with our algorithm design approach, and everything to do with the
politics of getting research funded. https://en.wikipedia.org/wiki/Dynamic_programming#History_of_the_name

2



will get us quite far in designing an algorithm for the problem.5 The point of stating this simple
lemma is that it gets us started thinking about a case analysis.

Consider the two cases. First, suppose that the final vertex is in the optimal independent set
vn ∈ S. What else can we conclude about S? By the definition of an independent set, we know
that the second to last vertex must not be in the solution vn−1 ̸∈ S, because it is neighbors with
vn. On the other hand, suppose that vn ̸∈ S. In this case, we can conclude that the optimal value
WS in the path graph P is the same as the value in the path graph with vn removed.6

By Lemma 3.1, these cases are exhaustive, so we can hope to characterize the solutions to the
entire problem in terms of two different subproblems. To better reason about subproblems, let Pi

for i ∈ [n] denote the path graph including the first i vertices (so, P = Pn). Further let WIS(Pi)
denote the weight of the maximum independent set of the ith path graph. With the case analysis
and notation in place, we can show the following lemma.

Lemma 3.2. Consider a maximum weight independent set S ⊆ V on the path graph P = (V,E) of
n ∈ N vertices with weights W . For n = 0, WS = 0; for n = 1, WS = w1. For n ≥ 2, the maximum
weight WS is equal to wn +WIS(Pn−2) or WIS(Pn−1). Specifically, the following equality holds.

WS = max {wn +WIS(Pn−2), WIS(Pn−1)}

Proof. Assume that n ≥ 2. By Lemma 3.1, there are two exhaustive cases to consider.

Case 1: Suppose vn ∈ S. Then, we know that vn−1 ̸∈ S, as there is an edge (vn−1, vn). With vn−1

not in S, we know that the remaining vertices V \ {vn, vn−1} remain feasible. Removing these two
vertices and considering an optimal solution to Pn−2, we conclude that WS = wn + WIS(Pn−2)
(by the feasibility of all the nodes in Pn−2).

Case 2: Suppose vn ̸∈ S. Excluding vn does not add any constraints to S, so in this case, then the
optimal solution is simply the optimal solution on Pn−1, so WS = WIS(Pn−1).

The maximum weight independent set on P is the maximum over these two exhaustive cases.

Immediately, this recursive formulation of the optimal value suggests an algorithm.

5Let this be a lesson that, often in algorithm design, it’s wise to start by writing down what you know about the
solution to your problem, no matter how “obvious” it is to you.

6In thinking about this problem, we can even conclude that vn−1 must be in the maximum weight independent
set: otherwise, vn should have been included in S. Note that this is not typical of dynamic programming problems.
As we’ll see, we do not need this property to design a correct algorithm.

3



ComputeWIS(Pk):

• if k = 0: return 0

• if k = 1: return w1

• Let Wk−1 ← ComputeWIS(Pk−1)

• Let Wk−2 ← ComputeWIS(Pk−2)

• if wk +Wk−2 > Wk−1:

– return wk +Wk−2

• return Wk−1

Correctness. Correctness of the algorithm, ComputeWIS, requires proof and follows by induction.

Proposition 3.3. For all k ∈ N, ComputeWIS returns the maximum weight of an independent set
on a path of k vertices.

Proof. By induction on the number of vertices k, we show that ComputeWIS always returns the
maximum weight of an independent set on a path of k vertices.

Base Cases: Suppose k = 0; then, there are no vertices in S, and WS = 0. Suppose k = 1; then,
there are no edges (and no independent set constraints), so S = {v1} and WS = w1. In both these
base cases, our algorithm, ComputeWIS, returns the correct value.

Inductive Step: Consider some k ≥ 2. Suppose for all k′ < k, the algorithm ComputeWIS(Pk′)
returns the maximum weight of an independent set on paths of k′ vertices. On input Pk, our
algorithm returns the maximum of wk+ComputeWIS(Pk−2) and ComputeWIS(Pk−1). By Lemma 3.2
and the inductive hypothesis (invoked on k′ = k−2 and k−1 < k), this return value is the maximum
weight of an independent set on Pk.

Running Time. To analyze the running time of ComputeWIS, we need to be more careful. As
written, we have a recursive algorithm that makes 2 recursive calls at each iteration. Further, the
size of the subproblems decreases very slowly. As a recurrence, the running time can be expressed
as follows.

T (n) ≥ T (n− 1) + T (n− 2) ≥ 2 · T (n− 2)

We can lower bound this recurrence as T (n) ≥ 2n/2. Exponential Time! A careful accounting of the
algorithm shows that, in fact, ComputeWIS computes the value for all feasible solutions explicitly,
so it is no wonder that it would scale exponentially.7

7Can you come up with an exact characterization of the number of independent sets on a path? Consider where
else you’ve seen a recurrence of the form Fn = Fn−1 + Fn−2.

4



MemoizedComputeWIS(Pk):

• if k = 0: return 0

• if k = 1: return w1

• if W [k − 1] = −1:

– W [k − 1]← MemoizedComputeWIS(Pk−1)

• if W [k − 2] = −1:

– W [k − 2]← MemoizedComputeWIS(Pk−2)

• if wk +W [k − 2] > W [k − 1]:

– return wk +W [k − 2]

• return W [k − 1]

W ← [−1, . . . ,−1]
return MemoizedComputeWIS(P )

3.2 Memoization and the Dynamic Programming Table

A further accounting of the recursive calls of ComputeWIS shows that many of the calls are identical.
In the current formulation, we pay for ComputeWIS(Pk) for each invocation, even though the value
is the same every time. If we record these values as we go, we can avoid redoing identical work.
This trick is generally referred to as memoization.

In memoization, we keep a global arrary—called the dynamic programming table—to maintain a
record of our previous computations. We memoize our algorithm to give MemoizedComputeWIS.
The key difference is that we maintain a 1D-dynamic programming table W , initialized to all −1
values (as a bookkeeping measure). If we ever see an entry W [k] with value −1, we recurse to
compute the optimal independent set value, then replace W [k] with the computed value. Then, in
future recursive calls, we know that if we encounter a value W [k] ̸= −1, we need not recurse.

Correctness. Nothing about the semantics of the algorithm have changed, so we can use exactly
the same proof of correctness (inducting on the number of vertices k).

Running Time. The memoized version of the algorithm is a tiny change from the original version,
but its running time differs immensely.

First, let’s note how many recursive calls can ever happen. MemoizedComputeWIS(Pk) is only called
when W [k] = −1, and then W [k] gets reassigned to some nonnegative value. By the fact that we
only updateW [k] when it starts as−1, we conclude that for each k ∈ [n],MemoizedComputeWIS(Pk)
is called at most once. Further, how much work do we perform per update of W [k]? In each such
call, O(1) additional work is performed to perform look-ups in W and perform comparisons. Thus,

5



in total—despite the recursive structure of the algorithm—we get away with performing O(n) work
to return the maximum weight independent set in P .

3.3 Iterative Dynamic Programming

We’ve shown a recursive formulation for solving our problem using dynamic programming. As you
can see in KT §6.2, for any dynamic program, there is an equivalent formulation as a bottom-up
iterative algorithm that operates on the dynamic programming table directly.

IterativeComputeWIS(P ):

• W ← [−1, . . . ,−1]

• W [0]← 0; W [1]← w1

• for k = 2, . . . , n:

– W [k]← max {wk +W [k − 2],W [k − 1]}

• return W [n]

Again, you should convince yourself that these programs are, in fact, equivalent. At times, recursion
will be the easiest way to formulate the ideas behind the problem solving, but almost universally,
the iterative solution will be easier (and faster) to implement.

6


