Plan

* High-level Overview

* Announcements

* Topics Review

4820 So Fan

Prelim 1

* Graph Algorithms

* Greedy Algorithms

* Dynamic Projecuming

4820 So Fan

Prelim 1

* Graph Algorithms

* Greedy Algorithms

* Dynamic Projucmung

Prelim 2

* Stable Matching

* Network flow

* FFT & Mathematical Algs

X P vs. NP

Exam Expectations

* Practice Exam Questions are representative!

	Xam	Expec	to troin	-					 	
					s ave	rs bro	esente	-tive		
 . * 		of to	pics.				quest		 	
			a derr						 	
					nany	poirts		esto		
)≈~.	ナト

Announcements * HWG due Los Solutions Released this afternoon * Prelim 2 Tomorrow 7:30-9p. L> See Ed for Room Assignments (Same as last time) * Ed Shutdown ~ 24 hrs before exam Lis Reopens after Break * Lecture on Friday!

(And Enjoy Spring Break!)

· · Pics

* Stable Matching

* Network Flow

* FFT & Mathematical Algs

* P. vs. NP.

Stable Matchies (2 Lectures)

Giver n Residencies R

n Doctors D

Lach Residency has preferences over D

Each Doctor has preferences over R

Stable Matchice (2 hectures)	
Giver n Residencies R n Doctors D	
Lach Residency has preferences over Each Doctor has preferences over	
Goal Find stable perfect matching N between R & D	0.M(9
Stable HreR M(r)O	
- de prefers M(d) to v	

Stable Matchice (2 Lectures)

Theorem (Gale & Shapley)

For every instance, there exists a

Stable perfect matching between R & D

Stable Matchice (2 Lectures)
Theorem (Gale & Shapley)
For every instance, there exists a stable perfect matching between R&D.
Pf Constructive via Gale-Shapley Algo.
n-Residencies make offers to Doctors
Doctors accept if offer is better than current match. iferative

Given. Flow Network G = (V, E)

1 - Source & SENV

1 - sinh h a fre a Va a a

- capacities c: E -> N

Given. Flow Natwork G=(V, E)

- Source SENV

-sinh Le V

- capacities c: E -> N.

Cool .

* Find Maximum Flow of E - M.

S.E. CAPACITY

2 CONSERVATION constraints.

* Find Minimum st. Cut SEV

Max flow = = min cut

Pf. Analysis of Ford-Fulkerson Algorithm?

Max flow = = min cut.

Pf. Analysis of Ford-Fulkerson Algorithm!

Ford-Fulkerson

9 - Compute Residual graph Gf

- Find augmenting st-path 2

Push flow

iterate

Reductions to Flow give algorithms!

* In Bipartite Graphs!

* Applications

Network Flow (6 Lectures) Reductions to Flow give algorithms! * In Bipartite Graphs! - Max Matching - Min Vertex Coner (Körig's Theorem) * Applications - Baseball Elimination - Cake Distribution - Flow Gadgets

FFT & Mathenatical Algs (3 Lectures)

Motivation. Given two polynomials p, 9 compute their product efficiently.

(3 Lectures)
Linear systems FFT & Mathematical Algs Motivation. Given two polynomials p, 9 compute their product efficiently. Key observation * Two equivalent representations of polynomials Coefficient Repr $P(x) = \sum_{i=0}^{n} P_i \cdot x^i$

La Point-Value Repr.

 $P(\omega_n) P(\omega_n^2) \sim P(\omega_n^2)$

FFT & Mathematical Algs (3 Lectures)

Given polynomial P = Pn-1 Pn-2 -- P. Po

in coefficient representation

Return evaluation $\hat{p} = \hat{p}(\omega_n) \hat{p}(\omega_n^2) \sim -\hat{p}(\omega_n^2)$

in point-value representation

on the nth roots of unity.

 $\frac{Pf}{M} = (\omega_n^2)^{n/2} = \omega_n^n = 1$

FFT & Mathematical Algs (3 lectures)

Given polynomial P = Pn-1Pn-2 -- P.Po in coefficient representation

Return evaluation $\hat{p} = \hat{p}(\omega_n) \hat{p}(\omega_n^2) \sim -\hat{p}(\omega_n^2)$ in point-value representation on the nth roots of unity.

Fast Fourier Transform

* Recursive Strategy $P(x) = P_{even}(x^2) + x \cdot P_{odd}(x^2)$

where $P_{\text{even}}(y) = \sum_{i=0}^{N/2-1} P_{2i}$, y

FFT & Mathematical Algs (3 Lectures)

Fast Fourier Transform

* 2 recursive calls

& degree drops by factor 2 in each call

 $T(n) \le 2.7(n/2) + O(n)$

(nlogn) basic operations


Applications

X Connolation

* Probability Competations

Motivating Question

Why don't we have efficient algorithms
for certain problems?

NP-Handness (4 Lectures) Motivatile Question Why don't we have efficient algorithms for contain problems?

NP = problems verifiable in

NP-Handness (4 Lectures) Motivatile Question Why don't we have efficient algorithms for contain problems? NP-Complete & NP * Every problem in NP reduces to problem in polynomial thre 1 (NP - Hand) 1 1 1 1 1 1

NP. - Handness (4 Lectures)

If P = NP, then NP-Hand problems Cannot be solved in polynomial time. NP. - Handness. (4. Lectures.)

If P = NP, then NP-Hand problems Cannot be solved in polynomial time.

NP-Hand Problems

 \times SAT, SSAT

* VERTEX COVER, INDEPENDENT SET, CLIQUE

* HAMILTONIAN PATH

opics.

* Stable Matching

* Network Flow

* FFT & Mathematical Algs

X P vs. NP

Questions ?

Good Luck