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I"Program"
* Repeat
-

- More R

if - Read 0 : Delet
I Write Blank ,

More R

While Read 0 : More R

I While Read 1 : More R 3 more to end of Oh ,
m

I
ifT Read blank :Ieject
-

Move L
,
Write blank Move L
- 1

- if Read Alank : Kett J Equal # of

① and I erased

While Read 1 : More L

I While Read 0 : More L



Church-TuringThesis

Everything computable , computable by a TM.

EndedChurch-Turing Thesis

Everything efficiently
- computable is

efficiently- computable by a TM .



Announcements

* Kieval Lecture Tonight 4 :30p & Malott 228

Mike Sipser on Pus
.
NP

* HW8 Released
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* Copy & Paste
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ResofThumb for TM Code

* Variables

- Finite number of variables

- Taking finite number of values

* Conditionals

- Finite number of nested conditionals

* Function calls / subroutines

- Functions must be computable
- Finite depth call stack .

Lotherwise , requires argument that

state can be maintained by
finite state machine using tape)



Multi-TapeTM

* Finite State Controller

* Constant Number of Infinite Read/Write Tapes
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&culating a Multi-Tape TM on a Single-tape TM

* Idea Encode multiple tape entries from as
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Simulation of single step of multi-tape TM

- scan from left to right until every tape head seen via Is

- Calculate next state
,
writes

,
and moves for each tape

- scan from right to left to make updates
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- Calculate next state
,
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Note quadratic overhead in time complexity !

For each step of multi-tape machine

↳ scan L to RCanwhen tape heads are discovered)

How long can this take ?
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-000/0011001
Simulation of single step of multi-tape TM

- scan from left to right until every tape head seen via Is

- Calculate next state
,
writes

,
and moves for each tape

-scan from right to left to make updates

Note quadratic overhead in time complexity !

For each step of multi-tape machine

↳ scan L to R lending when tape heads are discovered

Eat All existing (classical) programming languages
can be simulated on a TM w/ polynomial

overhead.

#
Extended Church-Turing Thesis



Self-Reference

* key to computability reductions

"On input <PY,
Simulate running p"

Ismulation actually computable ?



UniversalTuring Machine

Theorem : There exists
a Turing Machine U that

on input (Q ,
x) simulates the behavior

of running Q a X



UniversalTuring Machine

Theorem : There exists
a Turing Machine U that

on input (Q ,
x) simulates the behavior

of running Q a X

↳ Step-by-step simulation
,
not just 1/0 simulation

e . g.
allows for pseudocode of the form

"Run Q on X for t steps
"
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* 3- tape TM
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:cod state/tape head ofQutime - - -
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-mulateone step of Q

- Look up
state and tape head position onTy
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and character
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