
23 April 2025 Simulating Algorithms
~ / Turing Machines

Ran

* TM Examples

* Announcements

* Multi-Tape TMs

* Universal Turing Machine

Turing Machines
-

-

-

t f ---

↑
#definedby III

[E[
*Z = Input Alphabet

T = Tape Alphabet 3 wef = blak
+ T =

Left end

tapeof

* Q = Finite set of internal states

including lett Leteept Elect
* 6 = transitionrule

S(9 , 2) -> a ,
W, M

Turing Machines
-

-

-

t f ---

↑
#definedby III

[E[
*Z = Input Alphabet

T = Tape Alphabet 3 wef = blak
+ T =

Left end

tapeof

* Q = Finite set of internal states

including lett Leteept Elect
* 6 = transitionrule

new State

-
IL S

S(9 , 2) -> 9 y
&
M & more direction

M EEL ,R3
↑ ↑

symbol
I
symbol to

current state
read be written

ExampleTMs 2 = 2015 T = [0 ,
!
, w ,+]

0, 0, R
1
,
1
,
R

⑮ 0 R&&OW

↑ &
w . w ,

R
I
,
r,
L

O % ,
0
.20 E

1
,

1,tO- -

0
,
0
,
L 1

,
1,t

j j

4
,
w , L ↓ unspecified

transitions

↓
2(m) = ??? I #RejectAccep

--

↓ -

-- Xo wa www---f - ->

ExampleTMs 2 = 2015 T = [0 ,
!
, w ,+]

0, 0, R
1
,
1
,
R

⑭DGOW

↑ &
w . w ,

R
I
,
r,
L

O % ,
0
.20 E

1
,

1,tO- -

0
,
0
,
L 1

,
1,t

j j

4
,
w , L ↓ unspecified

transitions

2(m) = [01 : neN] #Accep IReject
n = 1

TmuslatingTMs to high-level programs

0, 0, R
1
,
1
,
R

⑮ DERGO

R
I
,
r,
L

W , W , ↑
-

1
,

1,td
O % ,

0
.20--
j j 4

,
w , L ↓0

,
0
,
L 1

,
1,t

#ept

-

muslatingTMs to high-level programs

"
more tape head right
until a I is read

"

0, 0, R
1
,
1
,
R

⑭OR O

R
I
,
r,
L

W , W , ↑
-

1
,

1,td
O % ,

0
.20--
j j 4

,
w , L ↓0

,
0
,
L 1

,
1,t

#ept

TmuslatingTMs to high-level programs

"Move tape head right "more tape head right
until aI is read

11 until a blank is read
"

-

0, 0, R
1
,
1
,
R

W R

1
S

I
⑮Di&up-

R
I
,
h

L

W , W , ↑
-

1
,

1,td
O % ,

0
.20--
j j 4

,
w , L ↓0

,
0
,
L 1

,
1,t

#ept

TmuslatingTMs to high-level programs

"Move tape head right "move head right
until a I is read

" until tape blank is read
"

-

0, 0, R
1
,
1
,
R1 Ih

W R vi
⑮Di&-0- OI↑ &R

I
L
L

W , W ,
S &

O % ,
0
.20

1
,

1,tO "Replacerightmosa- --
-

j j 4
,
w , L ↓0

,
0
,
L 1

,
1,t

#ept

I"Program"
* Repeat
-

- More R

if - Read 0 : Delet
I Write Blank ,

More R

While Read 0 : More R

I While Read 1 : More R 3 more to end of Oh ,
m

I
ifT Read blank :Ieject
-

Move L
,
Write blank Move L
- 1

- if Read Alank : Kett J Equal # of

① and I erased

While Read 1 : More L

I While Read 0 : More L

Church-TuringThesis

Everything computable , computable by a TM.

EndedChurch-Turing Thesis

Everything efficiently
- computable is

efficiently- computable by a TM .

Announcements

* Kieval Lecture Tonight 4 :30p & Malott 228

Mike Sipser on Pus
.
NP

* HW8 Released

SimulatingAlgorithmic Primitives on TMs

* Copy & Paste

↓

t #x(l..... (11/11 IT --
↓

End #x(xel.... (xel#(xo(X , (*) (*) ---

SimulatingAlgorithmic Primitives on TMs

* Copy & Paste

↓

t #x(l..... (x+ 111 IT ---

↓

End #x(xel..... (xel#(x(X , (*) (*) ---I

5
,
0

,
R -

,
0
,
h

D Mu
OL

More 2 W, S Move
O

, w,
R End -> Back

or
O write OO

Read-
~,

0
,
R

SimulatingAlgorithmic Primitives on TMs

* Copy & Paste

↓

t #x(l..... (x(#111 IT ---

↓

-
#x(xel..... (xel#(x(X , (*) (*)End I

-
,
0
,
h

5
,
0 R 5

,
0

,
R -

,
0
,
h

↓

Mu
D D Mu

Move ~,
I
,
L

More 2 More 2 W,
OL

MoveS

EO - O I
,
W
,
R ~O write OOBack write! End

O
IW
R End -> Back

T- Read-O-
W

,
I
,
R ~,

0
,
R

SimulatingAlgorithmic Primitives on TMs

* Copy & Paste

↓

t #x(l..... (x(#1111T ---

↓

-
#x(xel..... (xel#(x(X , (*) (*)End I

-
,
0
,
h

5
,
0 R 5

,
0

,
R -

,
0
,
h

↓

Mu
D D Mu

Move ~,
I
,
L

More 2 More 2 W
,
0 L

MoveS
-O E O I

,
W
,
R ~O write OOBack write! End

O
IW
R End -> Back

T- Read-O-
W

,
I
,
R

#
,
L↳. 2 T, T, L

~,
0

,
R

OEnd

SimulatingAlgorithmic Primitives on TMs

* Copy & Paste

↓
+t #x(xl..... (x/#111 IT ---

↓

I
---End #x(xel..... (xel#(x(X , (*) (*)

if Xi = 0if Xi = 1

more to right until - · ↑ more to right until

write aI

O
write a Q

and return to Xi+ 1 Read and return to Xi+ 1

#
,
L 2↳.

End

447

O

ResofThumb for TM Code

* Variables

- Finite number of variables

- Taking finite number of values

* Conditionals

- Finite number of nested conditionals

* Function calls / subroutines

- Functions must be computable
- Finite depth call stack .

Lotherwise , requires argument that

state can be maintained by
finite state machine using tape)

Multi-TapeTM

* Finite State Controller

* Constant Number of Infinite Read/Write Tapes

↓
- -#110

↓
0----

* Transition Rule

6(9
,

8
.
... On (-> q

,
(t ! ---Vu) (M .

- - Mu)
S
~

- ~

moves for each

symbols read
new symbols

headwritten tape
in [2 ,R,

- 3

&culating a Multi-Tape TM on a Single-tape TM

* Idea Encode multiple tape entries from as
-

single tape entry fromT
V

#:i

#
..
% , 100

Problem ?

&culating a Multi-Tape TM on a Single-tape TM

* Idea Encode multiple tape entries from as
-

*V

single tape entry from

I
include

4

"marked# copy of each

X = 9
.

#a 00d 00

-000/0011001
Simulation of single step of multi-tape TM

- scan from left to right until every tape head seen via Is

- Calculate next state
,
writes

,
and moves for each tape

- scan from right to left to make updates

-000/0011001
Simulation of single step of multi-tape TM

- scan from left to right until every tape head seen via Is

- Calculate next state
,
writes

,
and moves for each tape

- scan from right to left to make updates

Note quadratic overhead in time complexity !

For each step of multi-tape machine

↳ scan L to RCanwhen tape heads are discovered)

How long can this take ?

-

t current

-

-- ↑
T(n) Steps

-000/0011001
Simulation of single step of multi-tape TM

- scan from left to right until every tape head seen via Is

- Calculate next state
,
writes

,
and moves for each tape

-scan from right to left to make updates

Note quadratic overhead in time complexity !

For each step of multi-tape machine

↳ scan L to R lending when tape heads are discovered

Eat All existing (classical) programming languages
can be simulated on a TM w/ polynomial

overhead.

#
Extended Church-Turing Thesis

Self-Reference

* key to computability reductions

"On input <PY,
Simulate running p"

Ismulation actually computable ?

UniversalTuring Machine

Theorem : There exists
a Turing Machine U that

on input (Q ,
x) simulates the behavior

of running Q a X

UniversalTuring Machine

Theorem : There exists
a Turing Machine U that

on input (Q ,
x) simulates the behavior

of running Q a X

↳ Step-by-step simulation
,
not just 1/0 simulation

e . g.
allows for pseudocode of the form

"Run Q on X for t steps
"

Editionfor construction of U .

* 3- tape TM

-

T
,
G Holds description of QI
-

I
--

TC : IXo- X-
-

- -

-

↑ initialized to X

simulates tape of Q

:cod state/tape head ofQutime - - -

Editionfor construction of U .

* 3- tape TM

-

T
,
G Holds description of QI
-

I
--

TC : IXo- X-
-

- -

-

↑ initialized to X

simulates tape of Q

orecordstate/tape head ofQutime - - -

-mulateone step of Q

- Look up
state and tape head position onTy

- Access appropriate cell of Te

- Look up instruction of Q
, give state g

and character
y

- Update T2 and Ty
.

