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Announcements

* HW8 : Out next week

-> Still due April 29 (skip next week)

-> Regular length .

* All Prelim 2 regrades processed this weekend.
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Ea = 5(p)+ (a) : ((x) = 2(a)3

Given two programs,
do they recognize the same language ?

-
>

EQ REv coRE
.

Theorem

↳ Not Recognizable ,
nor collecognizable !

Proof Approach : Reduction from the Halting Problem.
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↳ Determining if & halts on input X

is recognizable ,
but not decidable .

HALT EQ => EQ coRE
.

z

Computable Reduction R

R
<Q,x- [P.,P , )

& halts on x => 2 (P) = [(P , )

& does not halt => I (P) + [ (P ,
)

on X
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toReductionfrom HALT EQ
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Given [Q , X) , write descriptions of Po
,

P
,
as

Po
-

on input z 2(p) = [
**Ignore W

*Accept

E
on in put w 2(P.) = ?
ignore W

,

and run*a .. +

TAcceptI

Output [P7#[P. X



E
on input w*drun Qoxignore w,

T#Accept

2(p ,
) = [We[*: P , accepts w 3.

[Q , x)HALT => Q halts on x in finite time



on in put w*run Qoxignore w, and

T#Accept

2(p ,
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[Q , x)HALT => Q halts on x in finite time

=> weG*, P , accepts w



on in put w#ignore w, and run Q on X

T#Accept

2(p ,
) = [We[*: P , accepts w 3.

[Q , x)HALT => Q halts on x in finite time

=> weG*, P , accepts w

=>[(P
,
) = [

*



on in put w . NEVER GET TO

run Q on X -#Ignorew and
Accept

instruction.

T#Accept

2(p ,
) = [We[*: P , accepts w 3.

[Q , x)HALT => Q halts on x in finite time

=> weG*, P , accepts w

=>[(P
,
) = [

*

[Q ,x] & HALT => Q does Not halt onX

=> fwe2*, P
,

does not half on w

=>2 (4) = 0
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HALT - tQ .

& halts on X # I(P) = [ (p) = 2
*
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Y
coRE

O HALT

=> EQ e coRE



FALT -> EQ .

Q does not halt on X # I(P) = [(P)

[

to
- Q
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=> EQ e RE



Recall FALT &RE.
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o

So #LT EQ EQ RE

Computable Reduction

<Q
,
x) <P#P . )

& doesNot halt on x => [p) = [ (P ,
)

& halts on X => I(P) = &(P, )



Reductionfrom #T to EQ
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write descriptions of Po
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↳
on input z*
I
on input w↳

Output(P)#P ,)



Reductionfrom #T to EQ
.

Given <, X)
,
write descriptions of Po

,
P

,
as

Ro
on input z [(p) = 0*ignore w

Eject

on in put w L(P ,
) = 4#ignore W

,
and run Q on X

*Accept

Output(P)#P ,)



on input w#ignore w ,
and run Q on X

Except

[Q , X) EIAT => Q does not half on X

=> 2(P ,
) = 0

[Q
,
X)E HALT => Q halts on x

=I(x)) = [
*

-

2(p) = [(P ,
) = 0 = Q does NOT halt

on X



EQ = [[p]#(P) : 20) = [(P) 3
REUcoRE

No way to
prove or refute

two programs
have the same functionality !



Theheck-GPT Problem.

* Write an inefficient algorithm A for 4820 homework

* Ask GPT to return an efficient algorithm A*

that solves the same problem as A.

* Return True iff A and A
*
solve the same problem.

Theorem Check-GPT is Undecidable !
-

Namely ,
there is no algorithm (current or future)
that can reliably check the output of AI

for correctness.



Languagesabout Programs

* Examples

DIAG
,
HALT

,
EQ, ---

* Many such languages are undecidable.

Do we have to show a new reduction for each one ?



SemanticLanguages

* A language of Program encodings L

is Samantic if

<PYEL is determined by the language [IP) ·

-

↓
input-output behavior

of P



SemanticLanguages

* A language of Program encodingsL

is Samantic if

<PYEL is determined by the language [IP).

ExampleSemantic Languages

Lenny = <(p) : ((x) = +3
Lau = [(P) : [(p) = [

*

3

&
finite

= [[P) : /[l)) is finite3

Nen-Semantic Language -> implementation

↓
for-loop

= &[P> : 4 uses a for loop G detail



Rice'sTheorem - L4[0 .
253

Suppose L is a nontrivial semantic language.

Then
,
↓ is undecidable

.

-

Implication for Program Analysis/Security -

=>
Impossible to prove

Rice's Theorem correctness/security
of arbitrary programs.
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Prof .

Reduction from HALT
.

* L is nontrivial => F some /M)EL

Suppose (on input w. Reject) * L (similar argument Sfor case oh

Reduction
-

Given <Q , X) ,

construct P as

2(p) = [(m) = (P) t L

For input w =
run Q on XI 17

=

[Q
, XY E HALT

run M on w

-Maccepts , Except I(p) = 0 => (p)* L

Output <PY
[Q

,X]HALT


