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#dowe do with NP-Hard problems ?

① Give up !

② solve SAT (per Lecture 28)

③ Solve Approximately
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MimumWeighted Vertex Cover

Given : Undirected graph G = (v
,
E)

~ /Vertex weights W = EweGre
w = 0

Find : minimum weight
Vertex Cover CEV 2

ver

Wr
.

⑳ Thu Min Wt . VC is

I NP-Hard .

· P . [u = 1 : vev]
2 -⑰ recovers VERTEX COVER

problem.
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Given : Undirected Graph G = (v
,
E)

~ /Vertex weights W = EweGre
w = 0

approximately
Find : minimum weight

Vertex Cover CEV

W(c)= ~

w
*

(4) = min w(



- pproximate Minimum Cover1 -HeightedVertex

-

Given : Undirected Graph G = (v
,
E)

~ /Vertex weights W = EweGre
w = 0

approximately
Find : minimum weight

Vertex Cover CEV

W(c)= ~

w
*

(4) = min w(

1- pproximation Ratio
of Algorithm AF
for minimizationem (



Today New paradigm for approximation algos .

* Integer Linear Programming ·
(FLP)

↳ Exact version : NP-Hand

↳ Relaxed version : Linear Programming & P

(generalizes MaxFlow)



Today New paradigm for approximation algos .

* Integer Linear Programming ·
(FLP)

↳ Exact version : NP-Hand

↳ Relaxed version : Linear Programming & P

(generalizes MaxFlow)

* Paradigm :

-Write down ILP

- solve corresponding LP

- Round solutions to be integral



Announcements

* Prelim Z Graded- Released After Lecture
.

* HW7 Released Today ->2 problems .
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nearinequalities
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Integerconstraints

Xi

#nearoptimization :

(c , x) = 2 .. x,Find min
i
=

S .t
.

constraints
.
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Thm ILP is NP-Hand

# By reduction from Min WT Vertex Cover
.

Variables per Vertex [xv : veVY

Xv indicates whether VE D or NOT

Claim .

Constraints - x = 50 , 154 in

Xe50 , 15 FreV
. 1-to-1 correspondence

Xu + X = )f(uv)E.Fw / SEV

· X
is feasible

for FLP >

Ejective S is a vertex

min E cover

* j · xi · So ILP finds
min not . VC
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#gerLinear Programming
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nearProgramming
variables X,
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#nearoptimization :

min (c , x) = .. x,Find
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=

T
nea Programming
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.
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SeeCS6820
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Max Flow reduces to Linear Programming
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↳near Programming is Useful !

Ex
.

Max Flow reduces to Linear Programming

Variables
-

[fe : e = E3

Constraints Ofte I Ce YezE

[to = [ Fo ↓ veVlEst3
e = (n

,v) e = (v
,w)

Objective

max E fo
e = (s

, v)



↳near Programming is Useful !

Ex
.

Linear Systems reduces to Linear Programming

Variables

Constraints

Objective



↳near Programming is Useful !

Ex
.

Linear Systems reduces to Linear Programming

Variables X , ...
Xn ER

Constraints
(ai

, xY = bi

- [ai
,
XY [-bi

Objective

min 1
-

X



nearProgramming Relaxation .

Min Wt. Vertex Cover ILP

Variables [xv : veVY

Constraints

Xe50 , 15 FreV
.

Xu + X = )f(uv)E.

Ejective
M

min E Wj
·

Xj
* j=
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nearProgramming Relaxation .

Min Wt . Vertex Cover #LP

Variables [xv : veVY

Constraints

-50, 15 FreV
.

OXEI veV
.

Xu + Xv z * (iv) E .

Ejective
M

min E
* i ,

j
·

Xi

Can we give a guarantee on the quality of
LP solution for solving ILP ?



ApproximateVC

On input G = (V IE). Construct & Solve LP

-

Variables [xv : veVY
-

↳near Inequalities
OIXvE #veV

.

Xu + Xv z * (iv) E .

Objective
-L ↑
min * wj . x;
* j=



ApproximateVC

On input G = (V IE). Construct & Solve LP

-

Variables [xv : veVY
-

↳near Inequalities

Xu + Xv z1Fre Gree ↑Ejective

min * wj . x;
* j=

Then
,
ROUND solution

c = &
For ve V.

if x- = " ,
C = CvGv]

Return C



Theren . Approximate VC returns a I-approximate VC
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Claim W(c) =2 . W
* (9)
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Claim C is a Vertex cover

* For all edges (n ,v)eE Xn + X- = /

=> at least one of Xo
,
Xu = '2

=> at least one of U
,
v &C

.

Claim W(c) =2 . W
* (9)



Theorem Approximate VC returns a I-approximate VC.
-

Claim C is a Vertex cover
.

* For all edges (v ,v) + E xn + X - = /

=> at least one of Xo
,
Xu = '2

=> at least one of U
,
v &C

.

Claim W(c) =2 . W
* (9)

w() = [Wj · H [Xi = ]

[ 2 . [Wj · Xi
= 2 . OPT (VC-LP)

& 20 OPT (VC-ILP) = 2. (uin we . ve]


