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* Reductions To SAT
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BooleanSatisfiability

Given : boolean formula 4 in Conjunctive Normal Form

CNFY = (x
,
v + x 2 vXj)1(X2VX- VX7V +x)
1 - - -- (1x ,

v -x
,)

Question.

Does there exist an to thassignment to (X .. -- Xu)
that satisfies & ?
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For each clause in Y

if a does not satisfy clause

Return t

Return ~
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-LevinTheorem .

SAT is NP-Complete .

↳ SAT is in NP
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↓
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L
-very efficiently verifiable problem reduces
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Announcements
* HWG ongoing

* Prelim #2

- Thurs
,
Mar 27

,
7 : 30-9p .

- Review Session : Thes, Mar 25 , 7-9p

-WedLecture

· Review of Topics

* Next Week : Spring Break !



-

L
-very efficiently verifiable problem reduces

Solving SAT is hard ! to SAT !

Solving SAT is powerful !
-



-

L
-very efficiently verifiable problem reduces

Solving SAT is hard ! to SAT !

Solving SAT is powerful !
-

↳
Practical Algorithm design paradigm :
- Reduce problem to SAT

- Use optimized SAT SOLVER

to solve the problem

(See Friday's Lecture (
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INDEPENDENT SET REDUCES To CNF-SAT
-

↳ Given : Graph G
, parameter le

Find : A subset SEV of vertices Isl = k

such that no two vertices u
, vES

share an edge (vv + E

↓
v

U O
K Y(u,v)E

C
O f5

Xu Xv
wo- - (u + s) v + (ves)-

t - um

Gxavexu) 1(2x vaxe)1(7XwVTXt) ... FezE
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Given G = (v , E)

& = (vxu
,

rex) -(2XVnx)1.

= 1 (ex- v zx)
(n ,v) = E

Claim . Pa is satisfiable iff

G has an independent set.

Problem ?



INDEPENDENT SET REDUCES To CNF-SAT
-

↳ Given : Graph G
, parameter le

Find : A subset SEV of vertices Isl = k

such that no two vertices u
, vES

share an edge (vv + E ↓
Need some mechanism to count to k !

Otherwise S = P
,
i
.

e . a= satisfies Ya
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At most k vertices in S.

Idea .

Order the vertices

⑭ in S & V.

Wg -
(2) (h)

x() Xu --- X
u wh

-

k variables
vertex

per

X(i) = 1 ES
h is the ith

vertex in S



(2) tx() X --- X(x) Constrain
I I I

X ()X - X(u)
2

i
(u)

X" X -- Xn



x() X
(2)
--- X(x) Constraints

I I I

) X( - X(u) ① For each ve V
X

(i)
X =↳most 1v

i
X" X -- - X

(u)

u

① For all i
, j (2x V 1X (j) (Y



x() X
(2)
--- X(x) Constraints

I I I

) X( - X(u) ① For each ve V
X

(i)
X =↳most 1v

i
X" X -- - X

(u)

u

① For all i
, j (2x ~ -xyi))

do tu (x, 1x, )
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X

↳most 1
(i)
Xv =

i ② For each 1[i = k
(u)

X"X - X
u h Exactly 1 X
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For each i
(i) (i) (i)
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~ X

2
~ X3 --- vX .
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x() X
(2)
--- X

(k) Constraints
I I I

) X( - X(u) ① For each ve V
X

↳most 1
(i)
Xv =

i ② For each 1[i < K
(u)

X"X X
u h 1 X

in
= /

-

③Exte for all is

ORIGINAL INDEPENDET SET
↳
7 Xin) ~ 2 x

u

CONSTRAINTS

1 Lexivx CPE te
knijen

Lis
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& has an independent set

S of cardinality In

#)

G has an independent set

S =Su ,

i,..., u
(m)

T

Ex

↳ 1981 % is sasfiable

-

- polynomial-sized CNF

- each clause can be generated in poly-time.

=> IND Set < CNF-SAT
- P



NP

*
set-& Fast



NP

Frase-⑨ - ·

SAT

·

Circuit SAT

Therem
(Cook-Levin)

·

problem in NP reduces to 3 SATEvery
in polynomial-time.
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CIRCUIT-SAT E 3 SAT

-

Given : Logical Circuit C : 50 , 15" -- 50 , 13
-

Question.
-

Does there exist X + 50 , 15

st
. ((x) = 1 ?

Note .

Circuit SAT Ep 3 SAT is a key step in

Proof of Cook-Levin Theorem !

Intuitio . Logical Circuits can implement any algorithm.

S
Including poly-time

Verifier for

any NP problem !



Circuits .

-

A Represented as a DAG

- / Each gate a
* Vertices I "Gates" / computes

boolean fu . on I-variables
* Edges E "Wires"

-> n total input wires to circuit
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·
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Circuits .

-

A Represented as a DAG

- / Each gate a
* Vertices I "Gates" / computes

boolean fu . on I-variables
* Edges E "Wires"

-> n total input wires to circuit

-> Output determined by evaluating

e
each gate from bottom to top.

-
95*

Reductionidea
↑
z

or ⑭↳ For each gate O93 9

M
I

↑ X ↑

O ↑ O9, 92 X Y
11↑ I & & Check correctness

X
, X2 X3 X4 X5

z> g(x , Y)
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Verifyeach gate
X Y z = NAND (X ,Y)
-

o O I

gate
output 10 I
-2into O I I

11-

"Negated
AND

"
Note : NAND is Complete

-

GATE GADGET -

-> set of clause satisfied by
any X

,
Y

,
z sit

. Z = NAND (X , Y)

z73 + (xny)
E z - + (xny)1 + z - (xny)
- -

GEviXv =Y)1(zvX)1(ZVY)



Ge
↑
O 95

AO
-

af *
Ar ↑ M
-

NAND

⑪

&

↑- Tas poly-sized CNE

↑ En · & satisfiable if

7 x 50 , 198 s . t.
X

, X2 X
z

X
+ X 5 X6 X7

((x) = 1.

Y = 901) (79 v - x vex)n(a ,vx) - (a , vx2) Igate 1 gadget

1 (792V2XqV2X5)1(92VX)1(92VX5) late2 gadgett

!

~ GG0V2GxV795)1(40V9n)1(96V95)] /gate6 gadget)


