Perface

* Review of NP-Hand Problems

* Announcements

* Hamiltonian Pater

Pus NP so four NP P = problems that can be solved in polynomial time NP = problems verifiable in polynomial time NP-Hand = Every problem in NP veduces in polytime Parson NP so so for We believe DP-Complete problems

CANNOT Le Solved

in poly-time P = problems that can be solved in polynomial time NP = problems verifiable in polynomial time Every problem in NP veduces in polytime

If any NP-Complete problem has poly-time algo >> P=

If any NP-Complete problem can't be solved => P + NF

Announcements

* HW6 out _ only 2 problems

* Practice Exam problems released

* Review Session

L. Thes 7-9p Gates G01

Lo No Saturday Recitation

X Puelim 2

→ Thuis 7:30 -9 p.

Last time

Motivation * Planning * Want to visit every National Park * Want to minimize drivieg time

Motivation. * Planning a vacation * Want to visit every National Park * Want to minimize drivieg time. A Known as the Traveling Salespenson problem. Given a list of locations 2 driving time between each location,

find shortest route that hits every location.

Today Closely Related Problem

Hamiltonian Path

Criven a diverted graph (G=(V, E)

Does there exist a simple path through G that visits every vertex in V?

Today Closely Related Problem

Hamiltonian Peth

Criven a diverted graph (G=(V, E)

Does there exist a simple path through G that visits every vertex in V?

Hamiltonian Path Criven a directed graph G=(V, E) Does there exist a simple path through G that visits every vertex in V? WLOG Assume we're given a start vertex sev and finish vertex teV. S)

Compane

* Shortest Path I an st-path of longth & k

Compane

* Shortest Path I an st-path of longth & k

EASY

* Longest Path 3 an st-path of length 2 le?

HARD L

Theorem

SAT SP HAM PATH SP LONGEST PATH

Reduction from SAT

* Gadgets:

- Assignments to variables

- Ensure Clauses are Satisfied.

Reduction from SAT * Gadgets: - Assignments to variables - Ensure Clauses ave Satisfied. * Clause ventices can only be "visited" if we choose a variable assignment

path" that satisfies clause.

Consider some clause (j = (xi v ¬xj V xn)

Clause Vertex

Consider some clause (j = (xi v 7xj V xu)

$$X_i = 1$$
 $X_i = 0$
 $X_i = 0$

Idea. Direction of path chosen determines assignment of $\bar{X} = \bar{\alpha}$.

 $X_2 = 1 \quad path$

X2=0 path

$$X_{2} = 1$$

$$X_{2} = 1$$

$$X_{3} = 1$$

$$X_{4} = 0$$

$$X_{5} = 0$$

$$X_{2} = 1$$

$$X_{2} = 0$$

$$X_{2} = 0$$

$$X_{3} = 0$$

$$X_{4} = 0$$

$$X_{2} = 1$$

$$X_{2} \in C_{1}$$

$$X_{2} \in C_{3}$$

$$X_{2} \in C_{2}$$

$$X_{2} = 0$$

$$X_{3} = 0$$

$$X_{4} = 0$$

$$X_{5} = 0$$

$$X_{6} = 0$$

$$X_{1} = 0$$

$$X_{1} = 0$$

$$X_{2} \in C_{2}$$

$$X_{2} = 0$$

$$X_{3} = 0$$

$$X_{2} \in C_{3}$$

$$X_{2} = 1$$

$$X_{2} \in C_{1}$$

$$X_{3} \in C_{3}$$

$$X_{4} = 0$$

$$X_{2} \in C_{2}$$

$$X_{5} = 0$$

$$X_{7} = 0$$

$$X_{8} = 0$$

$$X_{1} = 0$$

Claim. Clause vertex reachable on a path iff path "assigns" variable that satisfies clause

Suppose \$\phi\$ is satisficiable

* Consider a path through G corresponding

to satisfying assignment \(\alpha \in \overline{70,13}^n \)

Liferal some "vepresentative"

liferal s.t. liferal evaluates to 1

under

Suppose D is satisfiable. * Consider a path through G corresponding to satisfying assignment à EZO,13 For each clause, pich some "vepresentative" literal s.t. literal evaluates to 1 under

For this representative, take the detour to vertex C_j , from path associated w/ (iteral.

Suppose & is satisfiable.

* Consider a path through G corresponding to satisfying assignment a \in \tag{20,13}

- All variable vertices covered by a path

-All clause vertices covered because

\$\phi\ \text{satisfied by \$\alpha \rightarrow \frac{1}{2} \text{successful detour to} } \cdot \text{cj for all clauses.}

Hamiltonian Path in G.

Suppose there is a Hamiltonian Path in G * Every simple st-path only selects edges from [x=1] or $\frac{1}{x^{i-1}}$ Les Consider an assignment à E 20,15 based on this prientetion. We argue à satisfies .

Suppose there is a Hamiltonian Path in G
* Every simple st-path only selects
edges from [xi=0] or
$\frac{1}{x^{2}}$
Les Consider an assignment à € ₹0,15° based on this orientetion.
We argue à satisfies ϕ .
* Every cjeV is visited on Hamiltonian path.
Lo Co only reachable on paths associated w/ a satisfying literal.
associated w/ a satisfying literal.

Suppose there is a Hamiltonian Path in G * Every simple st-path only selects edges from [xi=0] or $\frac{1}{x^{2}}$ Les Consider an assignment à EZOIIJ based on this prientetion. We argue à satisfies . * Every cjeV is visited on Hamiltonian path. Lo Cjonly reachable on paths associated w/ a satisfying literal. => à corresponds to an assignment that Satisfies every clause!