19 March 2025	NP-Havd	Problems	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	· · · · · ·
· · · Plan			
× Independent Set	· · · · · · · · ·	· · · · · · · · ·	· · · · ·
* Announcements	· · · · · · · · ·	· · · · · · · · · ·	· · · · · ·
* Move NT-Havd Problems			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	· · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	· · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · ·	· · · · · ·
	· · · · · · · · ·	· · · · · · · · ·	

Maximum Independent Set
Criven a graph $G = (V, E)$,
SEV is an independent set if for all
$u \in S v \in S \Longrightarrow (u, v) \notin E$
INDSET = $\{G, k\}$: G contains on independent set $\{S\}$ of condinality $\geq k$
Theorem. 3SAT <pre>p INDSET.</pre>
Covollary. INDSET is NP-HARD.

Reduction from 3SAT to INDSET.	•
Design polynomial-time algorithm: * Given D	•
* Returns (G, K)	•
	•
Satisfiable <>> G has IS of condinality	•
$\sum_{i=1}^{n} A_i ^2 = \sum_{i=1}^{n} A_i ^2 $	•
$\varphi \in 3SA \land \iff \langle \mathcal{G}, \mathcal{L} \rangle \in \mathbb{I} \setminus \mathbb{D} S \in \mathbb{T}$	•
	•
	•
· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·	•

Reduction from 3SAT to INDSET.
Design polynomial - time algorithm:
\times \times Given ϕ
* Returns (G, K)
s.t.
P Satistiable <-> of candinality
\cdots
$\phi \in 3SAT \iff \langle G, h \rangle \in INDSET$
· · · · · · · · · · · · · · · · · · ·
Want produce a graph where
large IS "selects" assignment that satisfies all clauses.

Variable Assighment Gadgets												
For each $i=1$ - n	$X_2 = C_2 \in \{$ assigned a	Single										
$\left(\begin{array}{c} \chi_{1} = 0 \\ \chi_{1} = 0 \end{array} \right) = \left(\begin{array}{c} \chi_{1} = 0 \\ \chi_{2} = 0 \end{array} \right)$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\left(\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\cdot \cdot $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\mathcal{H}_{1} = \mathcal{H}_{1} = \mathcal{H}_{1}$												
Create two vertices	$X_{i0} = \frac{1}{2} \left(\frac{1}{2} \right)^{-1}$		· · · · · · · · · · · · · · · · · · ·									
$-Add (v_{i0}, v_{i1}) \in E$		· · · · · · · · · ·										

Clause Satisfaction Gadgets
For each j=1,, m some literal in Cj evaluates to 1
(else, unsatisfiable)
$C_{j} = \left(\begin{array}{c} l_{j} \\ l_{j^{2}} \end{array} \right)$
$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\right)^{\prime} \\ \end{array}\right)^{\prime} \\ \end{array}$
$\forall j = 1 - m$ -Create 3 vertices $l_{j_1}, l_{j_2}, l_{j_3} \in V$
-Add edges between each (lj, lj2), (lj2, lj3), (lj3, lji) EE
· · · · · · · · · · · · · · · · · · ·

Clause / Assignment Consistency $(X_1 = 0)$ $(X_2 = 0)$ $(X_q = 0)$ $\left(\begin{array}{c} X_{n-1} \\ X_{n-1} \end{array} \right)$ $\left(\begin{array}{c} X_{n} \\ X_{n-1} \end{array} \right)$ $(X_1 = 1) \qquad (X_2 = 1)$ $\begin{pmatrix} X_{n-1} \\ A_{n-1} \end{pmatrix} \begin{pmatrix} X_{n-1} \\ X_{n-1} \end{pmatrix} \begin{pmatrix} X_{n-1} \\ X_{n-1}$ $\left(X_{q}=1\right)$ Qmi (\mathcal{Q}_{1}) Q 21 l12) (Q13) J23 lm2 Lm3

Clause Assignment Consistency $(X_1 = 0)$ $(X_2 = 0)$ $(X_2 = 0)$ $(X_q = 0)$ $X = \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{1} \end{array} \right) \left($ $\begin{pmatrix} X_{n-1} \\ n-1 \end{pmatrix} = \begin{pmatrix} X_{n-1} \\ n-1 \end{pmatrix}$ $\begin{array}{c} \mathbf{x} \\ \mathbf{$ $l_{ij} = X_i + | \cdot | \cdot |$ Q_{m1} $\phi = (x_1, \vee \neg X_2 \vee X_q) \wedge (\neg X_q \vee X_{n-1} \vee \neg X_n) \wedge \neg -$ If literal lj= = Xi, add edge (lj+, Xio) EE If liferal ljt = TXi, add edge (ljt, Xi)) EE

Clause Assignment Consistency $\begin{pmatrix} X_{n-1} \\ X_{n-1} \end{pmatrix} = \begin{pmatrix} X_{n-1} \\ X_{n-1} \end{pmatrix} \begin{pmatrix} X_{n-1} \\ X_{n-1$ $(X_1 = 0)$ $(X_2 = 0)$ $X_q = 0$ $Q_{22} = X_{m-1}$ $\begin{array}{cccc} x & x & y \\ x & z & z \\ z &$ $l_{ij} = \chi_{ij}$ $l_{23} = 7 \times n$ For each clause Cj, for each literal literal literal literal If literal $2j_{+} = X_{i}$, add edge $(2j_{+}, X_{i0}) \in E$ If literal $2j_{+} = \forall X_{i}$, add edge $(2j_{+}, X_{i1}) \in E$

•	•	R	<u></u>	<u>, 1</u> 	~ c	+	τ <u>ο</u>	<u>ل</u> ل	γ.	• • •	R	<u>, u</u> 	در بر بر	∧ î) ,		י [נ	<u>ر ا</u>	~l 		•			•	•	r fo		•	e	، م		•		, , , , ,	Y Ì		· · · · · · · · · · · · · · · · · · ·	ر لو	•	•	•	•	•	•	•	•	
•	•	•	•	•		•	•		•	•	•	•	•	•		•		•	•	•		С	×~	بر د	Ţ	•	s S S	•	-f.	, , , ⊳ ✓	•	e e		د ل	· · ·	•		(a	بہ ہ	5.e	S	•	•	C)(5		m	
•	•	¥	•		ר - פ	M.	S	\ -γ		, C	Ļ	، ج ر ر	~		€	2 c	∫_⊂) Je	2 	, 6 2 ,	0		• • •			P F		✓ . ✓ .		د ر ا م	بر رم		م لر 8 و	-	د ح ا	•	•	•	•	•	r S r	с (с				ر		•	· · ·
•	•	•	•	•	•	•			•	•	•	•		•		•	•	•	•													//	•		- - -	, Y			, V		•	•	•	· ·		-	•	•	· ·
•	•	•	•	•	•		•		•	•	•	•				•	•	•	•		•		•	•	•	•	•	•)			•	• • •	•)	•	•	•	•	•	•	•	•	•	•	•	•	· ·
			•	•	•	•	•		•	•	•	•	•	•		•	•	•	•		•		•	•		•	•		•	•				•	•	•		•		•	•	•				•	•	•	· · ·
•	•	•	•	•	•		•		•	•	•	•		•		•	•	•	•		•		•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·
•	•	•	•	•	•				•	•	•	•		•		•	•	•	•		•		•	•	•	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· ·
•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	e e	•	•	•	•	÷	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Clause / Assignment Consistency $(X_1 = O)$ $\left(X_{n}=0\right)$ $(X_2 = O)$ $X_q = 0$ $(X_n = 1)$ $(X_2 = I)$ $(X_1 = 1)$ $(X_q = 1)$ $\left(X = 1 \right)$ lm2 LIS J_22 Jis L12 (Lm3) Claim. O is satisfiable () G has IS of an cardinality Z N+M

Announcer	<u>verts</u>
× HWJ ,	tue
× HW6	released today
De Diala	$7 \cdot Next Thursday$
	Z, Wext funds and
\downarrow	actice Questions Released Today
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Clause / Assignment Consistency $(X_1 = O)$ $\left(X_{n}=0\right)$ $(X_2 = O)$ $X_q = 0$ $(X_n = 1)$ $(X_2 = I)$ $(X_1 = 1)$ $(X_q = 1)$ $\left(X = 1 \right)$ lm2 LIS J_22 Jis L12 (Lm3) Claim. O is satisfiable () G has IS of an cardinality Z N+M

Clause / Assignment Consistency (X,=0) $\left(X_{n}=0\right)$ $(X_2 = 0)$ $X_q = 0$ $X_{1} = 1$ $\left(X_{n-1}=1\right)$ $(X_q = 1)$ $X_{\rm H} = X_{\rm H} + 1$ Qu (Q_m) 2.2 X2 (Qm2 l12) (L13 Jiz (Lm3) $\left(\begin{array}{cccc} X_{1} & V_{1} & V_{2} & V_$ ϕ · · · Key Property $\langle \rangle X_{1} = b \Rightarrow ljt = 0$

· ·	ϕ	satis	sfiable		т. Т.S.		size .	$\mathcal{N} + \mathcal{N} - \mathcal{N}$	· · · · · · · ·	· · · · · · · ·
· ·		Con	sider	· · · · · ·	satist	jirej	α SS1 α	n mer t	$\vec{a} \in \vec{\zeta}_{0},$	To the second seco
• •						· · · ·				
• •	· · ·				· · · · · ·					
• •										
• •										
• •									· · · · · · · ·	
• •										
• •										
• •		· · ·								
• •										
• •										
• •										
• •				· · · · ·					· · · · · · · ·	

\$ satisfiable => IS of size n+m * Consider a satisfying assignment à EZO, 13h × For each i=1.... add xib to S for ai=b O(n-1) = O O(n-1) $\alpha_1 = 1 \quad \alpha_2 = 1 \quad \dots \quad \alpha_q = 0$ $(X_1 = 0)$ $\begin{array}{c} \mathbf{x} \\ \mathbf{$ $X = \left(X_{q} = 1 \right)$ * For each j=1.-. m, add literal lite to S for some lit =1 under a Q_{11} Q_{21} Q_{23} Q_{23} Q_{23} \mathcal{L}_{m2} La Each clause chooses some representative 2jt = 1 under $\overline{x} = \overline{a}$

ϕ satisfiable \Longrightarrow IS of size $n + m$.
* Consider a satisfying assignment à EZO, 13h.
X For each $i = 1 \infty$, add x_{ib} to S for $a_i = b$.
* For each j=1, add literal ljt to S
for some 2jt = 1 under a
$\frac{C(\alpha)m}{\delta} = n + m$
Claim 1. S is an independent set.
<pre>- · · · · · · · · · · · · · · · · · · ·</pre>
· ·
· · · · · · · · · · · · · · · · · · ·

\$ satisfiable => IS of size n+m.
* Consider a satisfying assignment à EZO, 13h.
× For each $i = 1 \infty$, add x_{ib} to S for $a_i = b$.
* For each j=1, add literal
$\frac{C(\alpha im \theta_{o})}{S} + \frac{S}{S} = n + m$
Claim 1, S is an independent set.
* only select 1 vertex per variable Gadget. 1 vertex per clause gadget.
* $(l_{jt}, x_{ib}) \in E$ only if setting $x_i = b$ causes $l_{jt} = 0$
$\implies (l_{jE}, x_{ib}) \notin E$

· · · ·		nsatisfi	abe	· · · · · · · · € · · · ·	very I	= S. has candin $<$ $n + M$	al i'ty
· · · · ·	Ever		has s		vertices, vertices	from variable	gadgets
· · ·	· · · ·	· · · · · · ·	· · · · · · · ·	· · ·	· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·
· · · ·	· · · · ·	· · · · · · ·	· · · · · · · · ·	· · · ·	· · · · · · · · ·		· · · · · · ·
· · ·	· · · · ·	· · · · · · ·	· · · · · · · ·	· · ·	· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·
· · · ·	· · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · ·	· · · · · · · · ·		
· · ·	· · · · ·	· · · · · · ·	· · · · · · · ·	· · ·	· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·
· · · ·	· · · · ·	· · · · · · ·	· · · · · · · · ·	· · · ·	· · · · · · · · ·		
· · ·	· · · · ·	· · · · · · ·	· · · · · · · ·	· · ·	· · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · ·
· · ·	· · · · ·	· · · · · · ·	· · · · · · · ·	· · ·	· · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · ·

 \sim < \sim \sim \sim \sim * Every IS has < n vertices from variable gadgets & < m vertices from clause gadgets Imagile selection n ventices from variable gadgets $(X_1 = 1)$ $(X_q = 1)$

ϕ unsatisfiable \Longrightarrow Every IS has cardina $< n+M$	
* Every IS has < n vertices from variable & < M vertices from clause	gadgets
Imagile selectives n ventices from variable gadge	ts i i i
	· · · · · ·
Such a selection corresponds to some ac	
* Every assignment de ZO13" results in some clar	use Cj
with every literal lj=lj2=	$Q_{j_3} = Q_{j_1} = Q_{j_2}$
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

primisatisfiable => Every IS has candinality < M + Mvariable gadgets Imagile selecting n'ventices from $\left(\begin{array}{c} X_{1} = 0 \\ \end{array} \right) \qquad \left(\begin{array}{c} X_{2} = 0 \\ \end{array} \right)$ $(X_q = 0)$ $X_{1} = 1$ $X_{i} = \alpha_{i} \implies \beta_{j+1} = 0$ (l_{j2}) (l_{j3})) $(l_{jt}, X_{i\alpha_i}) \in E$ * Every assignment a ezoigne results in some clause G with every liferal lj_=lj_= lj_= 0

primisatisfiable => Every IS has candinality < M + Mvariable gadgets Imagne selection n ventices from $\left(\begin{array}{c} X_{1} = 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} X_{2} = 0 \\ 0 \end{array} \right)$ $X_q = 0$ $\left(\begin{array}{c} X_{1} = 1 \\ X_{1} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \\ X_{2} = 1 \end{array} \right) = \left(\begin{array}{c} X_{2} = 1 \end{array} \right) = \left$ $X_{i} = \alpha_{i} \qquad \Rightarrow Q_{j} = 0$ (l_{j2}) (l_{j3}) (l_{j4}) (l_{j4}) * Every lit has some neighbor already selected in Thus, IS cannot have I vertex per variable and I vertex per clarse \implies IS < n+M.

.		NP SAT IND SET		· ·	 . .<
INDSET INDSET	is NP-H	iond =	\Rightarrow I_NDSET	E = NP - Complete	
. <

VERTEXCOVER: Given a graph G and a size k,
does G have a vertex cover of
cardinality ≤ k.
G $C \subseteq V$ is a vertex cover
$\int_{\Omega} \left\{ \frac{1}{2} + \frac{1}{$
$u \in C$ or $v \in C$.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

VERTEXCOVER: Given a graph G and a size k,
does G have a vertex cover of cardinality < k?
G = V is a vertex cover if $\forall (u_1v) \in E$ $u \in C$ or $v \in C$.
Theorem VERTEX COVER is NP-Hand.

	NP SAT IND SET	VERTEX COVER	
Theorem VERTEX C	$sver = 1$, $\overline{15}$, N	P-Hand.	· · ·
By Reduction from		. .	· · ·
. 	· · ·

VERTEX COVER: $(\mathbf{x}_{i}) \in \mathbf{y}_{i} \in \mathbf{y}_{i} \in \mathbf{y}_{i}$ vertex cover if for all $(u,v) \in E \implies u \in C \quad or \quad v \in C$ INDEPENDENT SET: independent set if for all $\leq \leq \sqrt{1 + 1}$ our " \Rightarrow (u,v) \notin E ues or $v \in S$ ____

VERTEX COVER:
C = V is a vertex cover if for all
$(u,v) \in E \implies u \in C or v \in C$.
ENDEPENDENT SET:
SEV is an independent set if for all
$u \in S$ or $v \in S$ \Rightarrow $(u, v) \notin E$
Theorem CEV is a Vertex Cover iff
S = V > C is an Independent Set

VERTEX COVER: CEV is a vertex cover if for all $(u,v) \in E \implies u \in C \quad or \quad v \in C$ INDEPENDENT SET: SEV is an independent set if for all $u \in S \quad or \quad v \in S \quad \Longrightarrow \quad (u, v) \notin E$ $IS \leq_p VC$ Given (G, k), veturn (G, n-k) / poly-time reduction $\langle G_{1}, h \rangle \in \mathbb{T}S$ $(\langle E \rangle) \langle G_{1}, h - h \rangle \in \mathbb{V}C$

CLIQUE: Given a graph $G = (V, E)$ does there exist a set of 2k mutually - connected vertices?
$K \leq V \qquad \text{s.t.} \forall u, v \in K , (u, v) \in E$
5-clique
. .

CLIQUE: Given a graph $G = (V, E)$ does there exist a set of 2k mutually - connected vertices?
$K \leq V s \in \mathcal{H} \psi \in K (u_1 v) \in \mathcal{E}$
5-clique
Theorem. CLIQUE is NP-Hand,
1 1

CLIQUE: Given a graph G = (V, E)does there exist a set of 2k mutually-connected vertices? $K \leq V \qquad \text{s.e.} \quad \forall u, v \in K \quad , \quad (u, v) \in E$ G has a K-Clique iff Theorem $G' = (V, V \times V \setminus E)$ has a K - ISLa Complement edge set.

NP-Complete SAT VERTEX COVER Ģ CLIQUE MAX FLOW FACTORING NP-Complete problems form an equivalence class under poly-time roductions

Covening & Packing Problems
SET COVER: Given a finite universe U= Zui, um 3
and a collection of sets $S_{1,,S_{n}} \subseteq \mathcal{U}$
Does there exist a collection of at most
k sets s.t. $S_i \cup S_{i_2} \cup \dots \cup S_{i_k} = \bigcup$?
<pre> A A A A A A A A A A A A A A A A A</pre>
· · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · ·

Covening & Packing Problems
SET COVER: Given a finite universe $U = \overline{2}u_{1},, u_{m}\overline{3}$ and a collection of sets $S_{1},, S_{n} \subseteq U$
Does there exist a collection of at most k sets s.t. $S_i \cup S_{i_2} \cup\cup S_{i_n} = \bigcup$?
Theorem SET COVER is NP-Hond.
Pf , $VC \leq_P SETCONER$.
$\mathcal{U} = \mathcal{E}$ $\int_{v} = \mathcal{E} e \mathcal{E} \cdot e$

Covening & Packing Problems
SET PACKING: Given a finite universe U= Eu, un 3
$\alpha \alpha $
Does there exist a collection of at least
k sets s.t. $S_{i_1} \cap S_{i_2} \cap \cdots \cap S_{i_k} = \emptyset$?
· ·
<pre></pre>
· · · · · · · · · · · · · · · · · · ·
<pre></pre>
· · · · · · · · · · · · · · · · · · ·

Covening & Packing Problems
SET PACKING: Given a finite universe U= Eu, un Z and a collection of sets S1, Sm = U
Does there exist a collection of at least
k sets s.t. $S_{i_1} \cap S_{i_2} \cap \cdots \cap S_{i_k} = \emptyset$?
Theorem. SET PACKING is NP-Hand.
Pf. IS <pre>SET CONER.</pre>
$\mathcal{U} = \mathcal{V} \qquad \qquad$