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* Complete proof of Max Flow/Min Cut

* Announcements

* Konig's Theorem .
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Theorem (Max Flow / Min Cut

For every flow network G
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Finding a maximum flow is equivalent
to finding a minimum st-cut.



Poby Analysis of Ford-Fulkerson
,
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Caim
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When FF terminates u/f
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,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)



E-FulkersonAlgorithm

Initialize fe = 0 fee P .

Repeat.
* ComputeGf the residual of current flow.

* if there exists an st-path in Gt

I - Push flow along path
- Update flow f .

* if no st-path in Gt 7
1 - Return+

To show f witnesses a
--

min cut
-

-



Caim.
.

When FF terminates w/f there exists
I

St-Cut S
,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)

Termination Condition : Nest-pathin GF.

Define S = GUEV : u is reachable from s

im 2
- 3

T= VIS .

7a Note : tet by termination
condition
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Termination Condition : Nest-pathin GF.

Define S = GUEV : U is reachable from s

im 2
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Caim
.

When FF terminates u/f
,
there exists

St-Cut S
,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)

Define S = GUEV : v is reachable from s

in a-3

Weshow

FueS
,
veT : fur = Cuv.

YveT
,
ueS : fru = 0

.

↓
establishes the Claim

above



Define S = GUEV : v is reachable from S

in Gf 3.

S T
Suppose ureE .

Claim fur = Cur.
-

Cur
U->O
-

⑪S fur PF . Suppose fur < Cur
.

=> clur) = cur-fur >0

contradicting v not

reachable from u



Define S = GUEV : v is reachable from
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Summary
* For any flow

f and
any

st-cut S
,
T

val(f) = Cap(S ,T)

* Ford-Fulkerson terminates of a flow f
*
St

.

7 st-cut S* T*

val (f
* ) = Cap(S*, T

*

(

* Implies both :

=> Ford-Fulkerson is correct .

=> Max-Flow = Min-Cut ,



Smmary

* Ford-Fulkerson terminates in [val (f* ) iterations

=> RT : 0(val( * ) . m)
~

& "pseudopolynomial"

=> To be polynomial we need that

capacities are bounded polynomially ,

-

Edmonds-Karp/Dinic
↓

implementation of FF

That runs in polynomial time



Announcements.
-

* HW3 ongoing

↳ Ask on Ed for suggestions on programming problem
↳ Emphasis is on reductions
- 2 Edirections .

7) if A has soln => RIA) has soln,

* Recitation on Saturday. (E) if R(A) has soln -> A has solu

↳ Practice Problems !

* HWZ Grades released shortly

* Prelim #1 Solutions released shortly .



Knig'sTheorem. - key application of
Max Flow / Min Cut .

Du. Given an undirected graph G = (v
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t
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for every edge (u , v) = E

u = C OR veC
.
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Knig'sTheorem. - key application of
Max Flow / Min Cut .

D. Given an undirected graph G = (V
, E)

a Vertex Cover CEV is a

collection of vertices S .
t

.

for every edge (u , v) = E

u = C OR veC
.

Non-trivial VC
on O-- ↓- -

small C
.



Knig'sTheorem

Given a Ripartite graph G = (V , E).

The
minimum cardinality of a vertex cover
-

in 4

equals

maximum cardinality of a matching
in G .

- ---O -



Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching



Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

maxEasyDirection min ICII
matching

IMI
.

P bypicture

. C must have at

least one endpoint- of every eeM

o



Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

EasyDirection min ICI max IMI .

matching

Pf . Consider any
vertex ve V.

Adding v to & covers at most

1 edge from M (as it is a

matching) .



Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

EasyDirection min ICI max IMI .

matching

Pf . Consider any
vertex ve V.

Adding v to & covers at most

1 edge from M (as it is a

matching) .

To cover every edge in E,
must cover every edge in M,

=> Must use at least (M1 vertices .



Ionig'sTheorem. In bipartite graph G,

min ICI =
max Im

VC matching

max#d Direction min 121 C
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Ionig'sTheorem. In bipartite graph G,

min ICI =
max Im

VC matching

#d Direction min ICI & max IMI
VC matching

Reduce Matching to Flow
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By +2 edge capacity

No u -v edges from U1S
-> VIT



#d Direction min 121 [ max IMI
VC

-

matching
cap +

S cap = cap= 1
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O-" > T

00

U V

By +2 edge capacity

No u -v edges from U1S
-> VIT

Consider C = (UnT) v(V1S)
C#VC : Every edge in G adjacent to utUnT or veUnS



#d Direction min 121 [ max IMI
VC

-

matching
cap +

S cap = cap= 1

-·-> ⑦
⑤- -
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00

U V

By +2 edge capacity

No u -v edges from U1S
-> VIT

Consider C = (UnT) v(V1S)
(Cl = Cap(s ,

T) = val(f) = IM) El

-> By earlier reduction.


