
28 February 2025 Max Flow / Min Cut

& Konig's Theorem
Plan

* Complete proof of Max Flow/Min Cut

* Announcements

* Konig's Theorem .

Consider an st- Cut of G .

Ser T = VIS
-

st . SeS teT .

Capacity of an st-cut. Cap(S ,
T) = [Env

UVEE

utS
,
veT

w

edges from S to T .

->O
O

- ↓- ↓-
⑦

⑤ O
L O--
> ↑L ↓-

O>O

Natural upper
bound on FlowOut(s)

.

val (f) = Cap(s ,
i)

Theorem (Max Flow / Min Cut

For every flow network G
,
Sit

,

c : E- R
+

an+

val(t) = min Cap(s ,+)I max S ,
T

St-cut

O -- ↓-- ↓*-> ⑦
⑤ O

O-

-↑ ↓>>L ->OO-

Finding a maximum flow is equivalent
to finding a minimum st-cut.

Poby Analysis of Ford-Fulkerson
,

Lemma For any flowf
and

any
st . Cut SEV.

-

val(f) = FlowOut" (S) - FlowIntSL

Caim
.

When FF terminates u/f
,
there exists

St-Cut S
,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)

Lama. For any st-cut
.

SEV .
and

any flow f.

val(f) = FlowOut" (S) - FlowIntSL

=[far - I fre
ueS

,
veT veT

,
ueS

Intuition Flows between
-

u
,
u'ES "cancel"

Similar for v ,
veT

.

Net flow crossescut .

Lemma For any st-Cut
.

SEV .
and

any flowf-
-

val(f) = [far-I fre
ueS

,
veT veT

,
ueS

P val(f) = Flow Out (s)

= Flow Out (s) + [(FlowOut(u) - FlowIn (n))
uES15]-

O E CONSERVATION

Lama. For any st-cut
.

SEV .
and

any flow f.

val(f) = [far-I fre
ueS

,
veT veT

,
ueS

P val(f) = Flow Out (s)

= Flow Out (s) + [(FlowOut(u) - FlowIn (n))
uES15]-

O E CONSERVATION

= tru + E-Estin-Etr)
= [Hurl-fun) +furetforuueS
-

O

-
Flow that circulates win S

Caim
.

When FF terminates u/f
,
there exists

St-Cut S
,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)

E-FulkersonAlgorithm

Initialize fe = 0 fee P .

Repeat.
* ComputeGf the residual of current flow.

* if there exists an st-path in Gt

I - Push flow along path
- Update flow f .

* if no st-path in Gt 7
1 - Return+

To show f witnesses a
--

min cut
-

-

Caim.
.

When FF terminates w/f there exists
I

St-Cut S
,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)

Termination Condition : Nest-pathin GF.

Define S = GUEV : u is reachable from s

im 2
- 3

T= VIS .

7a Note : tet by termination
condition

I

Termination Condition : Nest-pathin GF.

Define S = GUEV : U is reachable from s

im 2
- 3

-&
- O

-
O 2

-S - T
⑤- 8
o& ⑦-

J
Xo O -& -- S- 8

G->
T-oo

S T

Caim
.

When FF terminates u/f
,
there exists

St-Cut S
,
T such that

val(f) = FlowOut" (S) = Cap(s ,T)

Define S = GUEV : v is reachable from s

in a-3

Weshow

FueS
,
veT : fur = Cuv.

YveT
,
ueS : fru = 0

.

↓
establishes the Claim

above

Define S = GUEV : v is reachable from S

in Gf 3.

S T
Suppose ureE .

Claim fur = Cur.
-

Cur
U->O
-

⑪S fur PF . Suppose fur < Cur
.

=> clur) = cur-fur >0

contradicting v not

reachable from u

Define S = GUEV : v is reachable from
in 2-3

S T
Suppose Vu - E

.

Claim f
-

vn

= 0

-u1
↳

fun ? P · Suppose frn > &
O
IS ⑪

reachable from u

=> clur) = frn > @

contradicting v not

af -Termination Condition : Net-pathin

-o
- O

&

S - O -
S

-
O

-S-O- 8
E & ⑦

J
Xo- -&
&O- S
- 8

G->
T

D--- O
E

VueS
,
veT :

fur = Cur. -
YveT

,
ueS :

valif) = [for-Efrs = 2 Cur
F Cap1s ,+)

fru = 0
.

uES
,
veT Vet

,
utS

utS
,
weT

mu

①
M

Summary
* For any flow

f and
any

st-cut S
,
T

val(f) = Cap(S ,T)

Summary
* For any flow

f and
any

st-cut S
,
T

val(f) = Cap(S ,T)

* Ford-Fulkerson terminates of a flow f
*
St

.

7 st-cut S* T*

val (f
*) = Cap(S*, T

*

(

Summary
* For any flow

f and
any

st-cut S
,
T

val(f) = Cap(S ,T)

* Ford-Fulkerson terminates of a flow f
*
St

.

7 st-cut S* T*

val (f
*) = Cap(S*, T

*

(

* Implies both :

=> Ford-Fulkerson is correct .

=> Max-Flow = Min-Cut ,

Smmary

* Ford-Fulkerson terminates in [val (f*) iterations

=> RT : 0(val(*) . m)
~

& "pseudopolynomial"

=> To be polynomial we need that

capacities are bounded polynomially ,

-

Edmonds-Karp/Dinic
↓

implementation of FF

That runs in polynomial time

Announcements.
-

* HW3 ongoing

↳ Ask on Ed for suggestions on programming problem
↳ Emphasis is on reductions
- 2 Edirections .

7) if A has soln => RIA) has soln,

* Recitation on Saturday. (E) if R(A) has soln -> A has solu

↳ Practice Problems !

* HWZ Grades released shortly

* Prelim #1 Solutions released shortly .

Knig'sTheorem. - key application of
Max Flow / Min Cut .

Du. Given an undirected graph G = (v
, E)

a Vertex Cover CEV is a

collection of vertices S .
t

.

for every edge (u , v) = E

u = C OR veC
.

Knig'sTheorem. - key application of
Max Flow / Min Cut .

D. Given an undirected graph G = (V
, E)

a Vertex Cover CEV is a

collection of vertices S .
t

.

for every edge (u , v) = E

u = C OR veC
.

3

I 2

- -
TRIVIAL VC

on O--5 6 C = V

H

Knig'sTheorem. - key application of
Max Flow / Min Cut .

D. Given an undirected graph G = (V
, E)

a Vertex Cover CEV is a

collection of vertices S .
t

.

for every edge (u , v) = E

u = C OR veC
.

Non-trivial VC
on O-- ↓- -

small C
.

Knig'sTheorem

Given a Ripartite graph G = (V , E).

The
minimum cardinality of a vertex cover
-

in 4

equals

maximum cardinality of a matching
in G .

- ---O -

Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

maxEasyDirection min ICII
matching

IMI
.

P bypicture

. C must have at

least one endpoint- of every eeM

o

Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

EasyDirection min ICI max IMI .

matching

Pf . Consider any
vertex ve V.

Adding v to & covers at most

1 edge from M (as it is a

matching) .

Konig'sMoreen In bipartite graph G ,

min ICI =
max Im

VC matching

EasyDirection min ICI max IMI .

matching

Pf . Consider any
vertex ve V.

Adding v to & covers at most

1 edge from M (as it is a

matching) .

To cover every edge in E,
must cover every edge in M,

=> Must use at least (M1 vertices .

Ionig'sTheorem. In bipartite graph G,

min ICI =
max Im

VC matching

max#d Direction min 121 C

matching
IM

VC
-

Reduce Matching to Flow

O-O

--O-o
-O

-
O O-

U V

Ionig'sTheorem. In bipartite graph G,

min ICI =
max Im

VC matching

#d Direction min ICI & max IMI
VC matching

Reduce Matching to Flow

cap +

cap =
O cap= 1

- - -=-> O O ⑦
⑤- -

O O- - >
O O-

U V

#d Direction min 121 [max IMI
VC

-

matching
cap +

S cap = cap= 1

-·-> ⑦
⑤- -
- > T

00

U V

By +2 edge capacity

No u -v edges from U1S
-> VIT

#d Direction min 121 [max IMI
VC

-

matching
cap +

S cap = cap= 1

-·-> ⑦
⑤- -

O-" > T

00

U V

By +2 edge capacity

No u -v edges from U1S
-> VIT

Consider C = (UnT) v(V1S)
C#VC : Every edge in G adjacent to utUnT or veUnS

#d Direction min 121 [max IMI
VC

-

matching
cap +

S cap = cap= 1

-·-> ⑦
⑤- -
- O > T

00

U V

By +2 edge capacity

No u -v edges from U1S
-> VIT

Consider C = (UnT) v(V1S)
(Cl = Cap(s ,

T) = val(f) = IM) El

-> By earlier reduction.

