
24 February 2025 Max Flow Algorithms :
Ford - Fulkerson .

Plan

* Ideas for Flow Algorithms

* Announcements

* Ford - Fulkerson

*work Flow Problem
.

* Given Flow Network G , Sit , c : E-R
+

* Find Flow f : E->R+ subject to

CapacityConstraints

VeeE

Offe [Ca to
Ce

ConservationConstraints

freV /Es ,t3 FlowInJ -
->①-retur =

e

fun -> Flow Out

#Flow
.

Find Flow -
*

that maximizes Flow Out (s)

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

setNo

paths ,

10

2 O-
-⑳

-
30 L

10

⑤

28

↓- 10
> 20

20 ①-④
20

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

Nous
10

-⑳
2 O

28-↓-
-

20 30 L

⑤
-↓ 10

-
⑦

28 28

> - -20 20

20 ①-④
20

20 ⑤- - --

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

Nous
10

O ⑭-⑳
2 O

28-
10- ↓-
-

20 30- L

⑤
-↓ 10

-
⑦

28 28

-20 20> - -
20 ①-④ O

20-
O

20 ⑤- - --

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

setNo

paths ,

10

⑭-⑳
20

10

10
-30-↓%.-

20 ①

20 ⑤- - --

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

setNo

paths ,

10

⑭-⑳
2 O

-10 10 10

30
10 ⑦

⑤ 18 ↓-
3

20

-

①
%. L

->>

20 ⑤- - --

10 ③ -0--

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

Nous
10

⑭ -x ⑳
-2 O

10 10 10

30 - 3↓-
-

-
- ⑦10

⑤ 18
O

->>
2 8- ① ④
10

20 ⑤- - --

10 ③ -0--

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

Nous
10 10

g ⑳
-2 OU--

-10 10

30- ⑦
O 18 ↓

3
S

->>
2 8- ① ④
10

20 ⑤- - --

10 ③ -0--

#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path

Nous
18

O ⑭-⑳
-2 O

-
10 10 10-
o

3
⑦- ↓-
-

20 30- L

⑤

28

18 ↓ i -10
28 28

-> -20 20> - -
20 - O- ① ④
10 20-

O

20 ⑤- - --

10 ③ -0--

No more set paths

GREEDY FLOW : 30 .

GreadyProblem- -
Irrevocable

Myopic

10

⑭-⑳
2 O

28
10 10- ↓ -
--↓- 3 ⑦20 30

10
28 28⑤ 18 --> -> 20 20
-

20 ①-④
20

Max Flow (4) = 40 .

Problem/Greedy-
Irrevocable

Myopic

10

⑭-⑳
-> 2 O

28 10
10 20- ↓- ->-↓ >
-

⑦20 30
10

20⑤ 20
10 -- -20 20> -

20 ①-④
20

Max Flow (4) = 40 . ↓
Greedy solution assigned fur = 20.

but f = 10.

Announcements

* Prelim #1 Grades Released After Lecture
.

* HW #3 Released Wednesday ,

* Recitation Starts again on Saturday.

Problem/Greedy-
Irrevocable

Myopic

10

-⑳
2 O

28
10 10-↓-
--↓ -
3

⑦20 30
10

28 28⑤ 18 --> -> 20 20
-

28 ①-④
20

Goal Systematic way to "Revoke" on flow so far.
-

flowAugmentinga

20↓↓20 20

->

①-
20

-
10

Toconserve Flow at v.

*FlowIn (v) = A Flow Out(v)

Augmentinga flow

20ztLX 20

->

①-
10 20

--
10

Toconserve Flow at v.

*FlowIn (v) = A Flow Out(v)

Given a Flow Network G
,
sources

,
sink +

w/ capacities C :E- R
+

and flow f : E- +

TheResidual Network af is a flow network

~ same vertex set

as 9 .

and residual capacities : E - +
,

where

Allow us to reason about

cf(uv) = E flow we can still push/unpush

⑭ ①

Given a Flow Network G
,
sources

,
sink +

w/ capacities C :E- R
+

and flow f : E- +

TheResidual Network af is a flow network

~ same vertex set

as 9 .

and residual capacities : E - +
,

where

① if far = Cur

cf(uv) = E NO RESIDUAL

& X O ur at capacity

Given a Flow Network G
,
sources

,
sink +

w/ capacities C :E- R
+

and flow f : E- +

TheResidual Network af is a flow network

~ same vertex set

as 9 .

and residual capacities : E - +
,

where

① if far = Cur

-
(uv) ECur-far if fur > Cur

C =

FORWARD RESIDUAL
Cur-fur

-
⑭ ① ur still has capacity to push flow

Given a Flow Network G
,
sources

,
sink +

w/ capacities C :E- R
+

and flow f : E- +

TheResidual Network af is a flow network

~ same vertex set

as 9 .

and residual capacities : E - +
,

where

① if far = Cur

-
(uv) ECur-fur if fur > Cur

C =

frn it frn > &
Cur-fur

- BACKWARD RESIDUAL

⑭ ①
--

fru
vn has capacity to be "unpushed"

10

Output of ⑭-⑳
2 O

28 -10 10Greedy -↓- 3 ⑦20 30·↓ - -10
28 28

18

-> -> 20 20
-

↓
20 ①-④

20

⑭-⑳
Residual

X -
Network X·↓%.⑰X> ①A

NO RESIDUAL fe = Ce

10

Output of -⑳
2 O

28
10 10-↓-
-Greedy -↓ -
3

⑦20 30
10

28 28⑤ 18 --> -> 20 20
-

↓
20 ①-④

20

⑭
10 - 0 ⑳

20-10
-

Residual

⑤ ↓ -Network 30 - 20

->20 - 10 ④

FORWARD RESIDUALS Fe < Ce

10

Output of ⑭-⑳
2 O

28 -10 10Greedy -↓- 3 ⑦20 30·↓ - -10
28 28

18

> 20 20

↓
->
-

-
20 ①-④

20

⑭ 10 ⑳
Residual - -20 M

& ↓ I
-

↑Network

⑤ &
Is

20

100 10 ⑦
--> I20

I p
① 20 ④-

BACKWARD RESIDUALS f > 0

10

Output of -⑳
2 O

28
10 10-↓-
-Greedy -↓ -
3

⑦20 30
10

28 28⑤ 18 -
> 20 20

↓
->
-

-
20 ①-④

20

⑭ 10 ⑳
Residual - 10

Network

⑤ ↑ &20

->
I p

① ④

st-path in Residual Network af ?

NAttempt . (Greedy in the Residual Network)

Initialize fe = 0 fee P .

Repeat.

NAttempt . (Greedy in the Residual Network)

Initialize fe = 0 fee P .

Repeat.
* ComputeGf the residual of current flow.

* if there exists an st-path in Gt

I - Push flow along path ↳ "Augmenting- Update flow f.

* if no st-path in Gt
path"

1 - Return f

NAttempt . (Greedy in the Residual Network)

Initialize fe = 0 fee P .

Repeat.
* Compute G the residual of current flow

.

* if there exists an st-path in Gt

I - Push flow along path ↳ "Augmenting- Update flow f.

* if no st-path in Gt
path"

1 - Return+

Ford-Fulkerson Algorithm
for Max Flow .

Theren. Ford-Fulkerson computes Max Flow correctly .

Theren. Ford-Fulkerson computes Max Flow correctly .

* FF Returns a valid flow.

* Flow f * returned by FF S . t .

FlowOutf
*

(s) [Flow Outf (s)
for all valid flows fo

SMPLIFYINGASSUMPTIONS

* capacities are integer

Ce : E -> N

* IE1 = R(IVI)

Theren. Ford-Fulkerson computes Max Flow correctly .

* FF Returns a valid flow.

* Flow f * returned by FF S . t .

FlowOutf
*

(s) [Flow Outf (s)
for all valid flows fo

SMPLIFYINGASSUMPTIONS

* capacities are integer

Ce : E -> N

* IE1 = R(IVI)

* if there exists an st-path in 47

I - Push flow along path ↳ "Angueu- Update flow f . ting
path"

Suppose st-path P has& bottlenech capacity b in GE

* if there exists an st-path in 47

I - Push flow along path ↳ "Angueu- Update flow f. ting
path"

Suppose st-path P has& bottlenech capacity b in GF

For all forward residual edges in
P.

fe fe + b

For all backward residual edges in P-

to fe -b
.

10

b = 10 a-⑳
10

fur-10 fut
+O L

⑤ ↑
fun +10 -

20

to+10
I p

① ④

For all forward residual edges in P .

push morefe fe + b flow

For all backward residual edges in P-

to fe -b
. unpush

flow

Lemma Suppose P is an st-path through 47
-

with bottlenech capacity b = min (f(e).
e=P

Pushing b units of flow along P preserves
CAPACITY & CONSERVATION constraints of f.

Lemma Suppose P is an st-path through 47
-

with bottlenech capacity b = min (f(e).
e=P

Pushing b units of flow along P preserves
CAPACITY & CONSERVATION constraints of f.

CAPACITY
Forward edges : Ce-fe = c f(e)

=> Ce = fe + cf(e) I fe +b

Backward edges : fe-b = fe-ctle) = fe-fe = 0
in

Lemma Suppose P is an st-path through 47
-

with bottlenech capacity b = min (f(e).
e=P

Pushing b units of flow along P preserves
CAPACITY & CONSERVATION constraints of f.

CONSERVATION

For all veVIEs ,t]

in ou&

En-Edge . ->- -Edge .

Forward Forward

A FlowIn (v) = + b AFlawOrt(v) = - b

Backward Backward

A Flow Out(v) = - $ A FlowIn(v) = + b

=> All in-out options preserve conservation.
#

So
,
FF preserves that

f is a valid flow

#XMdoes FF terminate ?

-fs + b·
FlowOut (s)

↓

Flow Outf
+b(s)

So
,
FF preserves that

f is a valid flow

#XMdoes FF terminate ?

fsu- -very augmenting path+ b [·
increases flow out of s
-

FlowOut (s)

↓ L, By integer weights b =1

Flow Outf
+b(s) in every

iteration.

So
,
FF preserves that

f is a valid flow

#XMdoes FF terminate ?

fsu- -very augmenting path+ b [·
increases flow out of s
-

FlowOut (s)

↓ L, By integer weights b =1

Flow Outf
+b(s) in every

iteration.

=> After Cap(s) = [cr ituations
I
No more

Sve E augmenting
paths.

-FulkersonRunning Time

c
= maxSuppose

*

exE
C

=> Cap(s) [c
*

. n .

How long does each iteration take ?

-FulkersonRunning Time

*

Suppose C
= max C
e- E

=> Cap(s) [c*. n .

How long does each iteration take ?

* Construct af = 2 edgesexper-

* Find augmenting pathP < BFS in Pf
from S

* Update flow +
-I update

per edge in

simple path

-FulkersonRunning Time

*

Suppose C
= max Co

.

e- E

=> Cap(s) [c
*

. n .

How long does each iteration take ?

* ConstructGf = 2 edges per
eRE

* Find augmenting pathP < BFS in Pf
from S

* Update flow +
-I update

per edge in

simple path

0(m) + O(m) + O(n)

R. O(cEn .m) // pseudopolynomial time .

