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*work Flow Problem
.

* Given Flow Network G , Sit , c : E-R
+

* Find Flow f : E->R+ subject to

CapacityConstraints

VeeE

Offe [Ca to
Ce

ConservationConstraints

freV /Es ,t3 FlowInJ -
->①-retur =

e

fun -> Flow Out

#Flow
.

Find Flow -
*

that maximizes Flow Out (s)



#empt#0 . Greedy
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#empt#0 . Greedy
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until
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#empt#0 . Greedy
* Find st-path w/ positive capacity & Repeat

until
* Push flow along path
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GREEDY FLOW : 30 .
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Greedy solution assigned fur = 20.

but f = 10.



Announcements

* Prelim #1 Grades Released After Lecture
.

* HW #3 Released Wednesday ,

* Recitation Starts again on Saturday.
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Goal Systematic way to "Revoke" on flow so far.
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*FlowIn (v) = A Flow Out(v)



Given a Flow Network G
,
sources

,
sink +

w/ capacities C :E- R
+

and flow f : E- +

TheResidual Network af is a flow network

~ same vertex set

as 9 .

and residual capacities : E - +
,

where

Allow us to reason about

cf(uv) = E flow we can still push/unpush
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Given a Flow Network G
,
sources

,
sink +

w/ capacities C :E- R
+

and flow f : E- +

TheResidual Network af is a flow network

~ same vertex set

as 9 .

and residual capacities : E - +
,

where

① if far = Cur

-
(uv) ECur-fur if fur > Cur

C =

frn it frn > &
Cur-fur

- BACKWARD RESIDUAL

⑭ ①
--

fru
vn has capacity to be "unpushed"
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NAttempt . (Greedy in the Residual Network)

Initialize fe = 0 fee P .

Repeat.



NAttempt . (Greedy in the Residual Network)

Initialize fe = 0 fee P .

Repeat.
* ComputeGf the residual of current flow.

* if there exists an st-path in Gt

I - Push flow along path ↳ "Augmenting- Update flow f.

* if no st-path in Gt
path"

1 - Return f



NAttempt . (Greedy in the Residual Network)

Initialize fe = 0 fee P .

Repeat.
* Compute G the residual of current flow

.

* if there exists an st-path in Gt

I - Push flow along path ↳ "Augmenting- Update flow f.

* if no st-path in Gt
path"

1 - Return+

Ford-Fulkerson Algorithm
for Max Flow .



Theren. Ford-Fulkerson computes Max Flow correctly .
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* FF Returns a valid flow.

* Flow f * returned by FF S . t .

FlowOutf
*

(s) [ Flow Outf (s)
for all valid flows fo

SMPLIFYINGASSUMPTIONS

* capacities are integer

Ce : E -> N

* IE1 = R(IVI)
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* if there exists an st-path in 47

I - Push flow along path ↳ "Angueu- Update flow f . ting
path"

Suppose st-path P has& bottlenech capacity b in GE



* if there exists an st-path in 47

I - Push flow along path ↳ "Angueu- Update flow f. ting
path"

Suppose st-path P has& bottlenech capacity b in GF

For all forward residual edges in
P.

fe fe + b

For all backward residual edges in P-

to fe -b
.
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For all forward residual edges in P .

push morefe fe + b flow

For all backward residual edges in P-

to fe -b
. unpush

flow



Lemma Suppose P is an st-path through 47
-

with bottlenech capacity b = min (f(e).
e=P

Pushing b units of flow along P preserves
CAPACITY & CONSERVATION constraints of f.



Lemma Suppose P is an st-path through 47
-

with bottlenech capacity b = min (f(e).
e=P

Pushing b units of flow along P preserves
CAPACITY & CONSERVATION constraints of f.

CAPACITY
Forward edges : Ce-fe = c f(e)

=> Ce = fe + cf(e) I fe +b

Backward edges : fe-b = fe-ctle) = fe-fe = 0
in



Lemma Suppose P is an st-path through 47
-

with bottlenech capacity b = min (f(e).
e=P

Pushing b units of flow along P preserves
CAPACITY & CONSERVATION constraints of f.

CONSERVATION

For all veVIEs ,t]

in ou&

En-Edge . ->- -Edge .

Forward Forward

A FlowIn (v) = + b AFlawOrt(v) = - b

Backward Backward

A Flow Out(v) = - $ A FlowIn(v) = + b

=> All in-out options preserve conservation.
#



So
,
FF preserves that

f is a valid flow

#XMdoes FF terminate ?

-fs + b·
FlowOut (s)

↓

Flow Outf
+b(s)
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↓ L, By integer weights b =1

Flow Outf
+b(s) in every

iteration.



So
,
FF preserves that

f is a valid flow

#XMdoes FF terminate ?

fsu- -very augmenting path+ b [·
increases flow out of s
-

FlowOut (s)

↓ L, By integer weights b =1

Flow Outf
+b(s) in every

iteration.

=> After Cap(s) = [cr ituations
I
No more

Sve E augmenting
paths.
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c
= maxSuppose

*
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C

=> Cap(s) [ c
*

. n .

How long does each iteration take ?
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Suppose C
= max C
e- E

=> Cap(s) [ c*. n .

How long does each iteration take ?

* Construct af = 2 edgesexper-

* Find augmenting pathP < BFS in Pf
from S

* Update flow +
-I update

per edge in

simple path



-FulkersonRunning Time

*

Suppose C
= max Co

.

e- E

=> Cap(s) [ c
*

. n .

How long does each iteration take ?

* ConstructGf = 2 edges per
eRE

* Find augmenting pathP < BFS in Pf
from S

* Update flow +
-I update

per edge in

simple path

0(m) + O(m) + O(n)

R. O(cEn .m) // pseudopolynomial time .


